Scientists discover new compound that rids cells of Alzheimer protein debris

Mar 07, 2011
Scientists discover new compound that rids cells of Alzheimer protein debris
Recycling centers. A cell tagged with fluorescent dyes shows locations (orange) where the trafficking pathway of amyloid proteins overlaps with the autophagosome pathway, the sites in the cell where autophagy takes place.

If you can't stop the beta-amyloid protein plaques from forming in Alzheimer's disease patients, then maybe you can help the body rid itself of them instead. At least that's what scientists from New York were hoping for when they found a drug candidate to do just that. Their work appears in a research report online in The FASEB Journal, and shows that a new compound, called "SMER28" stimulated autophagy in rat and mice cells. Autophagy is a process cells use to "clean out" the debris from their interior, including unwanted materials such as the protein aggregates that are hallmarks of Alzheimer's disease. In mice and rat cells, SMER28 effectively slowed down the accumulation of beta-amyloid.

"Our work demonstrates that small molecules can be developed as therapies, by activating a called , to prevent Alzheimer's disease," said Paul Greengard, Ph.D.,Nobel laureate and director of the Laboratory of Molecular and Cellular Neuroscience at The Rockefeller University in New York, NY. "By increasing our understanding of autophagy, it might be possible to stimulate it pharmacologically or naturally to improve the quality of life for aging people."

Using mouse and rat cells, scientists tested various compounds for their ability to reduce the buildup of beta-amyloid by exposing to compounds known to activate autophagy. The effects of these compounds were then compared by removing growth factors from the culture medium. Researchers then focused on the most effective compound, which was SMER28, to characterize the cellular components involved in this phenomenon. For that purpose, the effect of SMER28 on beta-amyloid formation was compared using normal cells or cells where the expression of genes known to be involved in autophagy was reduced or abolished. Results showed involvement of three important autophagic players, and one was essential for the effect of SMER28. This research represents a radically different approach to treating Alzheimer's disease, namely boosting a cellular mechanism to enhance the clearance of beta-amyloid, as well as other aggregates; and it opens a new therapeutic avenue for the treatment of this and other degenerative diseases.

"Autophagy has been called the cell's equivalent of urban renewal. In that sense, SMER28 functions as a cellular forklift to clear out unwanted debris," said Gerald Weissmann, M.D., Editor-in-Chief of The . "The Rockefeller group shows that strategies to remove the blight in cells that causes Alzheimer's disease are not only worth pursuing, but so far, appear to be very promising."

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: Yuan Tian, Victor Bustos, Marc Flajolet, and Paul Greengard. A small-molecule enhancer of autophagy decreases levels of Aβ and APP-CTF via Atg5-dependent autophagy pathway. FASEB J fj.10-175158; doi:10.1096/fj.10-175158

add to favorites email to friend print save as pdf

Related Stories

Researchers find new piece in Alzheimer's puzzle

Feb 25, 2009

Yale researchers have filled in a missing gap on the molecular road map of Alzheimer's disease. In the Feb. 26 issue of the journal Nature, the Yale team reports that cellular prion proteins trigger the process by which ...

Anti-inflammatory drug blocks brain plaques

Jun 24, 2008

Brain destruction in Alzheimer's disease is caused by the build-up of a protein called amyloid beta in the brain, which triggers damaging inflammation and the destruction of nerve cells. Scientists had previously shown that ...

Alzheimer's prevention role discovered for prions

Jul 03, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

Cell recycling protects tumor cells from anti-cancer therapy

Mar 06, 2008

Cells have their own recycling system: Discarded cellular components, from individual proteins through to whole cellular organs, are degraded and the building blocks re-used in a different place. The scientific term for this ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.