Scientists block ship-borne bioinvaders before they dock

Mar 28, 2011
This is a ship emptying ballast water. Credit: Maritime Environmental Resource Center

The global economy depends on marine transportation. But in addition to cargo, the world's 50,000-plus commercial ships carry tiny stowaways that can cause huge problems for the environment and economy. A new model created by Smithsonian scientists will facilitate accurate screening of vessels for dangerous species before they unload. The team's findings are published today in the journal Environmental Science & Technology.

Ballast water taken up by in coastal waters teems with plankton and microbes. When discharged at the next port of call, these hitchhikers can wreak havoc on receiving ecosystems. Under current federal regulations, ships exchange their ballast water in the open ocean to flush out unwanted species. However, some survive the process, and not all ships travel across oceans. Environmental regulators have known about this problem for decades. But while regulators check ship records and can sometimes test salinity to verify compliance, unlike many pollutants, there are no federal requirements limiting the number of viable, potentially dangerous organisms.

That is about to change. The U.S. Coast Guard has proposed a new set of rules limiting the number of organisms allowed, in line with current International Maritime Organization standards. For larger zooplankton (length, width or height at least 50 microns, or one-half the thickness of a piece of paper), the number must be fewer than 10 viable organisms per cubic meter (264 gallons). On-board ballast water treatment technologies offer a promising solution, enabling ships to substantially cut the risk of delivering dangerous species. But while a few systems have entered the market, the challenge of testing the ballast water—and the technology—remains. A major stumbling block is simply understanding how such testing should occur and how much ballast water must be tested in order to count very sparse numbers of organisms.

To help regulators and engineers develop and test such treatment systems, and ultimately enforce these standards, a team of researchers developed a statistical model to see how to count small, scarce organisms in large volumes of water accurately. Led by Whitman Miller, research ecologist at the Smithsonian Environmental Research Center, the scientists took samples that exceeded the limit and ran them through various tests to see which violations would be spotted. Larger samples gave the best results: sampling only 0.1 cubic meter of water (26.4 gallons) made it difficult to detect concentrations even twice as high as the standard. By contrast, when they raised the volume to 7 cubic meters (1848 gallons), the test regularly picked up violations as low as 13 zooplankton per cubic meter.

Another innovation of the model is that it can pool sample results over time and possibly across ships, making it easier to determine if treatment systems function as advertised and thus whether ships are actually compliant or not. Since analyzing samples larger than 7 cubic meters is difficult for most cargo ships, by taking multiple 7-cubic-meter samples, regulators could effectively raise the volume without overburdening the ships.

"When trying to decide how to evaluate a treatment system, we need to balance scientific rigor with what is logistically feasible," said Miller. "Science can help inform regulatory efforts. However, in the end, it is necessary for regulators to determine the level of environmental protection that is acceptable in accordance with both scientific evidence and the needs and desires of society."

"The findings of this study will greatly assist the Coast Guard to develop and implement effective and economical procedures for approving treatment equipment and verifying compliance by ships in meeting discharge standards to minimize the risk of introducing potentially harmful organisms to U.S. aquatic ecosystems," said Richard Everett, an environmental scientist with the Coast Guard's Environmental Standards Division.

The Coast Guard proposal would require most ships arriving in U.S. waters to have ballast water-treatment systems that dramatically reduce the number of living organisms in their discharge. Under the proposed regulation, most existing ships would have until 2014 or 2016 to comply, but any ships built after Jan. 1, 2012, would need to comply immediately. The agency estimated in 2009 that the new regulation could cost as much as $168 million a year, largely for ships to install the new technologies necessary to comply. However, in terms of economic and environmental damage avoided, it could save anywhere from $165 to $585 million a year.

The Coast Guard is also considering implementing a second phase of regulations, which would be up to a thousand times more stringent than the International Maritime Organization standards, perhaps beginning in 2016, but subject to an assessment of practicability.

Explore further: Risks from extreme weather are 'significant and increasing'

More information: pubs.acs.org/doi/pdf/10.1021/es102790d

add to favorites email to friend print save as pdf

Related Stories

Microbial stowaways: Are ships spreading disease?

May 29, 2008

Ships are inadvertently carrying trillions of stowaways in the water held in their ballast tanks. When the water is pumped out, invasive species could be released into new environments. Disease-causing microbes could also ...

Great Lakes invasive species studied

May 23, 2006

The longstanding problem of various invasive species entering the Great Lakes via the St. Lawrence Seaway is now gaining attention from scientists.

Satellite data reduce invasion of alien species

Dec 20, 2010

(PhysOrg.com) -- Every day, thousands of different organisms are carried far from their natural habitat in water used as ship ballast. To reduce the transfer of invasive aquatic species between ecosystems, ...

New, bigger barnacle discovered on Florida’s east coast

Oct 25, 2006

A bigger barnacle than Florida has seen before has made its way to the state’s east coast. Experts aren’t sure what the oversized Megabalanus coccopoma’s impact will be, but it’s been spotted this month in St. Augustine ...

Shrimp species latest Great Lakes invader

Dec 25, 2006

An invader shrimp, hopping a ride on an overseas freighter, has entered the Great Lakes, fulfilling an 8-year-old prediction by Canadian researchers.

Recommended for you

Education is key to climate adaptation

9 hours ago

Given that some climate change is already unavoidable—as just confirmed by the new IPCC report—investing in empowerment through universal education should be an essential element in climate change adaptation ...

India court slams Delhi's worsening air pollution

19 hours ago

India's environment court has slammed the government over the capital's horrendous air pollution, which it said was "getting worse" every day, and ordered a string of measures to bring it down.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.