New role for an old molecule: protecting the brain from epileptic seizures

Mar 06, 2011

For years brain scientists have puzzled over the shadowy role played by the molecule putrescine, which always seems to be present in the brain following an epileptic seizure, but without a clear indication whether it was there to exacerbate brain damage that follows a seizure or protect the brain from it. A new Brown University study unmasks the molecule as squarely on the side of good: It seems to protect against seizures hours later.

Putrescine is one in a family of called "polyamines" that are present throughout the body to mediate crucial functions such as cell division. Why they surge in the after isn't understood. In a lengthy set of experiments, Brown neuroscientists meticulously traced their activity in the brains of seizure-laden . What they found is that putrescine ultimately converts into the neurotransmitter GABA, which is known to calm brain activity. When they caused a seizure in the tadpoles, they found that the putrescine produced in a first wave of seizures helped tadpoles hold out longer against a second wave of induced seizures.

Carlos Aizenman, assistant professor of neuroscience and senior author of a study published in the journal Nature Neuroscience, said further research could ultimately produce a drug that targets the process, potentially helping young children with epilepsy. Tadpoles and toddlers aren't much alike, but this basic aspect of their is.

"Overall, the findings presented in this study may have important therapeutic implications," Aizenman and co-authors wrote. "We describe a novel role for polyamine metabolism that results in a protective effect on seizures induced in developing animals."

Detective work

The result that "priming" the tadpoles with a seizure led to them being 25 percent more resistant to a subsequent seizure four hours later was "puzzling," said Aizenman, who is affiliated with the Brown Institute for Brain Science. It took about a dozen more experiments before his team, led by graduate student Mark Bell, could solve the mystery.

First they hindered polyamine synthesis altogether and found that not only did the protection against seizures disappear, but it also left the tadpoles even more vulnerable to seizures. Then they interrupted the conversion of putrescine into other polyamines and found that this step enhanced the protection, indicating that putrescine was the beneficial member of the family.

Going with those results, they administered putrescine directly to the tadpoles and found that it took 65 percent longer to induce a seizure than in tadpoles that didn't get a dose of putrescine.

Further experiments showed that the protective effect occurs after putrescine is metabolized, with at least one intermediary step, into GABA, and GABA receptors are activated in brain cells.

"Potentially by manipulating this pathway we may be able to harness an ongoing protective effect against seizures," Aizenman said. "However I should caution that this is basic research and it is premature to predict how well this would translate into the clinic."

In the meantime, the research may also help explain a bit more about young brains in general, Aizenman said.

"Our findings may also tell us how normal brains, especially developing brains, may regulate their overall levels of activity and maybe keep a type of regulatory check on levels," he said.

Explore further: New technique uses a genetic tool and light to view and map neuronal circuits

Related Stories

New study explains some mysteries of neonatal seizures

Sep 09, 2009

A study led by MassGeneral Hospital for Children (MGHfC) investigators is providing new insight into the mechanism of neonatal seizures, which have features very different from seizures in older children and adults. In their ...

Gene therapy inhibits epilepsy in animals

Nov 08, 2006

For the first time, researchers have inhibited the development of epilepsy after a brain insult in animals. By using gene therapy to modify signaling pathways in the brain, neurology researchers found that they could significantly ...

Attempting to predict epileptic seizure

Dec 14, 2010

While the causes of epileptic seizures continue to confound brain researchers, scientists have been exploring how changes in the coordinated activity of brain networks, as monitored through electrodes, might help predict ...

Study yields clues about the evolution of epilepsy

Jan 06, 2009

Two children have a seizure. One child never has another seizure. Twenty years later, the other child has a series of seizures and is diagnosed with epilepsy. A study being led by researchers at Rensselaer Polytechnic Institute ...

Recommended for you

'Dimmer switch' for mood disorders discovered

7 hours ago

Researchers at University of California, San Diego School of Medicine have identified a control mechanism for an area of the brain that processes sensory and emotive information that humans experience as ...

How stress tears us apart

16 hours ago

Why is it that when people are too stressed they are often grouchy, grumpy, nasty, distracted or forgetful? Researchers from the Brain Mind Institute (BMI) at EPFL have just highlighted a fundamental synaptic ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Nik_2213
not rated yet Mar 06, 2011
Please, please, please let this be light at end of tunnel for epilepsy treatment: Too many of the existing drugs have unfortunate side-effects, and most leave their takers dizzy and dopey without preventing all seizures...