Study traces possible role of damaged DNA in tumor development

Mar 04, 2011

DNA provides the instruction manual for all life forms. Occasionally, instructions are not carried out properly, and bad messages are sent leading to the creation of mutant proteins and possible tumor development.

Paul Doetsch, PhD, professor of and and associate director for basic research at Emory's Winship Cancer Institute and Damien Brégeon, PhD, at Institut de Génétique et Microbiologie in Paris, have outlined the role this process – known as transcriptional mutagenesis – might play in in a Nature Reviews Cancer article published on February 24, 2011.

"The majority of human cells do not multiply continuously but are slow-replicating and devote a large part of their energy to transcription," say the authors. " damage can miscode at the damaged site and produce mutant transcripts. This process is transcriptional mutagenesis and could lead to the production of mutant proteins and may therefore be important in tumor development."

Transcriptional mutagenesis occurs when cells with damaged DNA produce bad messages during transcription, which leads to the creation of mutant proteins. Scientists already have learned that some genetic damages may block the transcription process, which is a signal for DNA repair molecules to move in and correct the mistake. When certain types of DNA damage are present, however, the non-dividing cells are capable of continuing transcription through the damage despite the erroneous coding messages. This problem can be exacerbated when cells have defects for repairing DNA damage.

As Doetsch and Brégeon note, data on this process are accumulating in several laboratories around the world, and evidence is mounting that transcriptional mutagenesis could have an important role in tumor develop¬ment and other biological outcomes, including the development of drug resistance. However, at this point there is not enough evidence to know the extent to which transcriptional mutagenesis is involved in tumor development.

"One will have to follow the progeny of a single cell to determine whether cancerous growth can be initiated by the transient expression of oncogenic pro¬teins or the disruption of signaling pathways," the authors say. "Future studies addressing these issues will provide additional insights into the mechanisms and consequences of transcriptional mutagenesis and further establish the role of this process in tumor development."

Explore further: Tissue stiffness linked to aggressive type of breast cancer

Related Stories

Cells can read damaged DNA without missing a beat

Feb 09, 2010

Scientists have shown that cells' DNA-reading machinery can skim through certain kinds of damaged DNA without skipping any letters in the genetic "text." The studies, performed in bacteria, suggest a new mechanism that can ...

Toward new drugs that turn genes on and off

Jun 04, 2009

Scientists in Michigan and California are reporting an advance toward development of a new generation of drugs that treat disease by orchestrating how genes in the body produce proteins involved in arthritis, ...

Rewrite the textbooks: Transcription is bidirectional

Jan 25, 2009

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier ...

Recommended for you

DNA alternative to Pap smear sparks medical debate (Update)

16 hours ago

A high-tech screening tool for cervical cancer is facing pushback from more than a dozen American patient groups, who warn that the genetic test could displace a simpler, cheaper and more established mainstay of women's health: ...

User comments : 0

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...