New robotic lander tested at historic test site

Mar 04, 2011
The robotic lander during strapdown testing. This phase of tests allows the engineering team to fully check out the integrated lander prototype before moving to more complex free flight tests. Credit: NASA/David Higginbotham

(PhysOrg.com) -- Today, engineers at NASA's Marshall Space Flight Center in Huntsville, Ala., began the first phase of integrated system tests on a new robotic lander prototype at Redstone Test Center’s propulsion test facility on the U.S. Army Redstone Arsenal, also in Huntsville. These tests will aid in the design and development of a new generation of small, smart, versatile robotic landers capable of performing science and exploration research on the surface of the moon or other airless bodies, including near-Earth asteroids.

This initial test phase, or strapdown testing, allows the engineering team to fully check out the integrated lander prototype before moving to more complex free flight tests. The team secures, or straps down, the prototype during hot fire tests to validate the propulsion system's response to the flight guidance, navigation and control algorithms and flight software prior to autonomous free flight testing.

"Moving the robotic lander tests to the Redstone Test Center facility is a good example of intergovernmental collaboration at its best," said Larry Hill, Robotic Lunar Lander Development Project Manager Test Director, at the Marshall Center. "Engineers and

technicians from , the Army and our Huntsville-based support contractor, Teledyne Brown Engineering, have worked tirelessly over the last month to modify the historic test facility formerly used for missile testing to accommodate NASA's lander test in record time, saving NASA time and money."

"Our team has been on a record paced design and development schedule to deliver the robotic lander prototype to the test site," said Julie Bassler, Robotic Lunar Lander Development Project Manager. "We have succeeded in designing, building and testing this new lander prototype in a short 17 months with an in-house NASA Marshall team in collaboration with the our partners" -- Johns Hopkins Applied Physics Laboratory of Laurel, Md., and the Von Braun Center for Science and Innovation in Huntsville.

The flight test program includes three phases of testing culminating in free flight testing for periods up to sixty seconds scheduled for summer 2011. The prototype provides a platform to develop and test algorithms, sensors, avionics, software, landing legs, and integrated system elements to support autonomous landings on airless bodies, where aero-braking and parachutes are not options. The test program furthers NASA’s capability to conduct science and exploration activities on airless bodies in the solar system.

Development and integration of the lander prototype is a cooperative endeavor led by the Robotic Lunar Lander Development Project at the Marshall Center, Johns Hopkins Applied Physics Laboratory and the Von Braun Center for Science and Innovation, which includes the Science Applications International Corporation, Dynetics Corp., Teledyne Brown Engineering Inc., and Millennium Engineering and Integration Company, all of Huntsville.

The project is partnered with the U.S. Army’s Test and Evaluation Command’s test center located at Redstone Arsenal. Redstone Test Center is one of six centers under the U.S. Army Test and Evaluation Command and has been a leading test facility for defense systems since the 1950’s. Utilizing an historic test site at the Arsenal, the project is leveraging the Redstone Test Center’s advanced capability for propulsion testing.

Explore further: A full-spectrum Mars simulation in a box

add to favorites email to friend print save as pdf

Related Stories

NASA's new lander prototype 'skates' through testing

Jan 27, 2011

(PhysOrg.com) -- NASA engineers successfully integrated and completed system testing on a new robotic lander recently at Teledyne Brown Engineering’s facility in Huntsville in support of the Robotic Lunar ...

NASA Selects Team To Build Lunar Lander

Oct 03, 2005

NASA's Deputy Associate Administrator for the Exploration Systems Mission Directorate Doug Cooke announced Friday the selection of NASA's Marshall Space Flight Center, Huntsville, Ala., and Goddard Space Flight Center, Greenbelt, ...

Recommended for you

A full-spectrum Mars simulation in a box

7 minutes ago

There are many reasons why Mars excels at destroying expensive equipment. For one thing, its entire surface is made of partially-magnetized dust. For another, Mars possesses just enough atmosphere so that ...

LADEE mission ends with planned lunar impact

9 minutes ago

(Phys.org) —Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface ...

Proposed Mars 'Icebreaker' mission detailed

47 minutes ago

Scientists supported by the Astrobiology Technology for Exploring Planets (ASTEP) and Astrobiology Instrument Development Programs (ASTID) have outlined the proposed 'Icebreaker' mission to Mars in a recent ...

User comments : 0

More news stories

Proposed Mars 'Icebreaker' mission detailed

Scientists supported by the Astrobiology Technology for Exploring Planets (ASTEP) and Astrobiology Instrument Development Programs (ASTID) have outlined the proposed 'Icebreaker' mission to Mars in a recent ...

Exoplanets soon to gleam in the eye of NESSI

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

Researchers uncover likely creator of Bitcoin

The primary author of the celebrated Bitcoin paper, and therefore probable creator of Bitcoin, is most likely Nick Szabo, a blogger and former George Washington University law professor, according to students ...

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...