Solving the riddle of nature's perfect spring

Mar 01, 2011

(PhysOrg.com) -- Scientists have unravelled the shape of the protein that gives human tissues their elastic properties in what could lead to the development of new synthetic elastic polymers.

University of Manchester researchers, working with colleagues in Australia and the United States, used state-of-the-art techniques to reveal the structure of tropoelastin, the main component of elastin.

Elastin allows tissues in humans and other mammals to stretch, for example when the lungs expand and contract for respiration or when widen and narrow over the course of a billion heart beats.

The study, published in the science journal PNAS (March issue), revealed how evolution has triumphed where engineering has so far failed by generating a molecule with near-perfect that will last a lifetime.

"All mammals rely on elastin to provide their tissues with the ability to stretch and then return to their original shape," said researcher Dr Clair Baldock, from the University of Manchester's Wellcome Trust Centre for Cell Matrix Research. "This high level of physical performance demanded of elastin vastly exceeds and indeed outlasts all human-made elastics.

"It is the co-ordinated assembly of many tropoelastins into elastin that gives tissues their stretchy properties and this exquisite assembly helps to generate elastic tissues as diverse as artery, lung and skin.

"We discovered that tropoelastin is a curved, spring-like molecule with a 'foot' region to facilitate attachment to cells. Stretching and relaxing experiments showed that the molecule had the extraordinary capacity to extend to eight-times its initial length and can then return to its original shape with no loss of energy, making it a near-perfect spring."

She added: "Elastics are used in applications as diverse as clothing, vehicles, and even space travel, so understanding how the structure of tropoelastin creates its exceptional elastic properties will hopefully enable the development of synthetic 'elastin-like' polymers with potentially wide-ranging applications and benefits."

Initiator and research project leader Tony Weiss, Professor in the School of Molecular Bioscience, The University of Sydney, added: "Tropoelastin is a tiny protein 'nanospring' in the human body. Our bodies assemble these nanosprings to put elasticity into tissues like skin, blood vessels and lung.

"Our finding is the result of more than a decade of international collaboration. Our scientific teamwork spans Australia, the UK, USA and Europe. Tropoelastin's extraordinary capacity to extend to eight-times its initial length and then return to its original shape, with no loss of energy, is nature showing us how to make an ideal nanospring."

Explore further: DNA may have had humble beginnings as nutrient carrier

More information: 'Shape of tropoelastin, the highly-extensible protein that controls human tissue elasticity,' PNAS. dx.doi.org/10.1073/pnas.1014280108

Related Stories

New potential to treat chronic obstructive pulmonary disease

Jan 27, 2010

Chronic obstructive pulmonary disease (COPD) is defined by emphysema and/or chronic bronchitis. It destroys the normal architecture of the lung and inhibits the mechanical aspects of breathing, which prevents necessary gas ...

White tea could keep you healthy and looking young

Aug 11, 2009

Next time you’re making a cuppa, new research shows it might be wise to opt for a white tea if you want to reduce your risk of cancer, rheumatoid arthritis or even just age-associated wrinkles. Researchers ...

New materials developed for vascular graft

Jun 14, 2006

Virginia Commonwealth University engineers and scientists have developed a new material that may one day help patients with damaged arteries regenerate new ones.

Recommended for you

DNA may have had humble beginnings as nutrient carrier

13 hours ago

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

13 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0