The rich chemistry around an evolved star

Mar 11, 2011
A deep optical image of the carbon star IRC+10216, showing traces of its surrounding envelope. New SMA observations study the rich chemistry of the envelope, and find 442 spectral lines from over fifty molecules. Credit: Izan Leao; the Very Large Telescope

(PhysOrg.com) -- Over 170 molecules have been detected in space, from simple diatomic molecules like CO to complex organic molecules with over 70 atoms, like fullerene.

These play a critical role in the development of as they form new stars and planetary systems, and of course in the chemistry that later develops on the surfaces of planets. One of the major issues in modern astronomy is figuring out exactly where all these molecules and associated came from.

The variable star CW Leo, also known as IRC+10216, is one of the brightest objects in the sky as seen from Earth; it is about 450 light-years away. It shines mostly in the infrared (not optical) because the central star is surrounded by a dense cloud of dust and gas that it ejected in a late stage of its evolution; that dust blocks the . The material is known to be rich in carbon-bearing molecules.

CfA astronomers Nimesh Patel, Ken Young, Carl Gottlieb, Pat Thaddeus, Bob Wilson, Mark Reid, Mike McCarthy, and Eric Keto, together with five colleagues, used the (SMA) to study the spectrum of IRC+10216 across a wavelength band, in an effort to detect and characterize as many molecules in the star's envelope as possible.

The scientists report finding an amazing 442 spectral lines in their survey, more than 200 of them detected for the first time in any astronomical source. All but 149 can be identified as arising from specific molecules. In addition to measuring the strengths of the lines and the motions of the molecules responsible, the SMA survey also obtained images of the nebula around in the star in the light of each of these species. The unidentified features, for example, tend to arise from compact regions around the star and probably correspond to hotter states of the known molecules; future work is needed to confirm this conclusion. The new results provide a remarkable view of the rich chemistry around this nearby star, and help to strengthen the conclusion that many complex molecules trace their origin to the envelopes of evolved stars.

Explore further: POLARBEAR detects curls in the universe's oldest light

Related Stories

Studying a Star Before it is Born

Dec 04, 2009

(PhysOrg.com) -- The first phase of a star's formation are thought to begin deep inside a natal cloud of gas and dust. In the earliest stages, material coalesces under the influence of gravity into so-called ...

Water around massive young stars

Sep 16, 2010

Water is critical to human life, but also plays an important role in the life of stars and their planetary systems. As a gas, water helps to cool collapsing clouds of interstellar material so that they can ...

A wealth of molecules in an extreme galaxy

Feb 21, 2011

(PhysOrg.com) -- Arp 220 is the closest galaxy to the Milly Way with an extreme luminosity, defined as being more than about 300 times that of our own galaxy. Some dramatic galaxies have values of luminosity ...

Mining for Molecules in the Milky Way

Jun 02, 2008

Scientists are using the giant Robert C. Byrd Green Bank Telescope (GBT) to go prospecting in a rich molecular cloud in our Milky Way Galaxy. They seek to discover new, complex molecules in interstellar space ...

Herschel takes a peek at the ingredients of the galaxies

Nov 27, 2009

(PhysOrg.com) -- The European Space Agency has today released spectacular new observations from the Herschel Space Observatory, including the UK-led SPIRE instrument. Spectrometers on board all three Hershel ...

Recommended for you

Big black holes can block new stars

12 hours ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

POLARBEAR seeks cosmic answers in microwave polarization

12 hours ago

An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, ...

New radio telescope ready to probe

15 hours ago

Whirring back and forth on a turning turret, the white, 40-foot dish evokes the aura of movies such as "Golden Eye" or "Contact," but the University of Arizona team of scientists and engineers that commissioned ...

Exomoons Could Be Abundant Sources Of Habitability

Oct 20, 2014

With about 4,000 planet candidates from the Kepler Space Telescope data to analyze so far, astronomers are busy trying to figure out questions about habitability. What size planet could host life? How far ...

Partial solar eclipse over the U.S. on Thursday, Oct. 23

Oct 17, 2014

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

User comments : 0