To meet, greet or retreat during influenza outbreaks?

Mar 28, 2011

When influenza pandemics arrive, the specter of disease spread through person-to-person contact can mean that schools close, hand sanitizer sales rise, and travellers stay home. But is severing social and business interactions with our neighbors really better than taking a chance on getting sick?

"Infectious disease can mean making trade-offs between the risks and rewards of meeting others," says Eli Fenichel, an Arizona State University scientist. "It's critical that we more clearly understand the role that human decisions play in transmitting disease."

Fenichel, a professor in ASU's School of Life Sciences and lead author, is one of five ASU scientists in a transdisciplinary working group that has developed a better model for understanding the role of adaptive human behavior in the spread of disease. The group's work appears in this week's online edition of the journal (PNAS).

Mathematical models are commonly used to help to forecast diseases and to develop science-based approaches to improve public health. However, while behavioral change has been a primary human defense against disease since the plagues of the Middle Ages, has only recently caught the attention of epidemiologists charged with forecasting and providing scientific guidance on public health policy.

In this PNAS study, the authors point out that traditional epidemiological models assume that peoples' behaviors remain constant when faced with disease risk, and don't allow accurate assessment of public health decisions that encourage behavior change or "social distancing" policies.

In an outbreak of severe disease, epidemiologists rely on a measurement called "R0" or R-naught to quantify the transmissibility of a virus or other pathogen in a population and to determine vaccination or treatment programs. According to the authors' model, R0 alone is an unreliable measurement when disease risk alters human behavior.

Fenichel says that people place different values on interpersonal relations based on a variety of considerations, and how they act will depend on that value. "Behavioral restrictions can function as a tax on interactions and need to be considered," Fenichel says. "For example, a suggestion by health officials to 'fist bump,' rather than shake hands is good in informal situations. But if you have a job interview that behavior might be costly."

Further, notes coauthor Carlos Castillo-Chavez: "Different people from different cultures respond differently to disease threats. As citizens of a global village, we must better understand the collective behavior and individual decisions people make when faced by the risks of disease." Castillo-Chavez is a professor in the School of Human Evolution and Social Change in ASU's College of Liberal Arts and Sciences.

The new model accounts for tradeoffs that people make when weighing the risk of exposure to illness versus the benefits of interacting with other people. The benefit of good health is only one part of an overall index of satisfaction or "utility" or "wellbeing." This is especially true when most people don't expect any permanent side-effects from illness.

How does this play out at a societal level? In a simulated outbreak, a small increase in the price of interpersonal contact lowers the peak prevalence of the disease slightly. Slightly fewer people become infected and social utility is increased. Further increase in the price of contact, which causes individuals to make even fewer contacts, can prevent even more people from getting sick; however, this can decrease the overall benefits to society.

"Our model allows us to include behavior and shows how behavioral incentives can shape the dynamics of a disease," says Fenichel.

The researchers hope that their modeling framework helps in the creation of more effective and lower cost public health responses to infectious disease.

"This work should offer a novel approach to the challenging task of capturing dynamic population behavior in infectious disease transmission models," says Gerardo Chowell, a mathematical epidemiologist in ASU's School of Human Evolution and Social Change and researcher with the Fogarty International Center at the National Institutes of Health.

The research for the PNAS publication was conducted by an interdisciplinary group of epidemiologists, economists, ecologists, and mathematicians – all part of the SPIDER (Synthesizing and Predicting Infectious Disease While Accounting for Endogenous Risk) Working Group at the National Institute for Mathematical and Biological Synthesis (NIMBioS).

"This work points out the importance of including individual behaviors, based upon personal economic decisions, in analyzing social responses to diseases," says NIMBioS Director Louis Gross. "The SPIDER Working Group's new mathematical framework that incorporates feedback responses between individuals and their perception of disease and economic risk is a highly useful method to evaluate public health policies with a level of generality that is not readily available from more complex computational models."

Explore further: Can robots help stop the Ebola outbreak?

More information: Fenichel EP et al. Adaptive human behavior in epidemiological models. Proceedings of the National Academy of Sciences. Online Early Edition, week of March 28, 2011.

Provided by National Institute for Mathematical and Biological Synthesis

not rated yet

Related Stories

Scientists examine human behavior and the threat of disease

Jun 02, 2009

As swine flu spread from Mexico to Texas and then fanned out farther in the United States, Americans began to alter their behavior. Families kept children home from school, postponed trips to the mall, and stayed home instead ...

Weather, stomach bugs and climate change: Refining the model

Jun 04, 2008

Monitoring extreme weather, such as periods of high temperature, is one way to predict the timing and intensity of infectious diseases like cryptosporidiosis, an intestinal disease that causes upset stomach and diarrhea. ...

Researchers tackle influenza by studying human behavior

Aug 04, 2009

Researchers from The University of Texas at Austin will participate in a $3 million, five-year grant from the National Institutes of Health (NIH) to fight influenza and other diseases by creating models that simulate the ...

Pitt receives grant to create virtual models for epidemics

Jul 31, 2009

As the world prepares for a probable resurgence of H1N1 in the coming months, University of Pittsburgh researchers are controlling the spread of infectious diseases virtually with a $13.4 million National Institutes of Health ...

Recommended for you

Can robots help stop the Ebola outbreak?

4 hours ago

The US military has enlisted a new germ-killing weapon in the fight against Ebola—a four-wheeled robot that can disinfect a room in minutes with pulses of ultraviolet light.

New bird flu case in Germany

5 hours ago

A worrying new strain of bird flu has been observed for the first time in a wild bird in northern Germany, the agriculture ministry said Saturday.

Mali announces new Ebola case

Nov 22, 2014

Mali announced Saturday a new case of Ebola in a man who is fighting for his life in an intensive care unit in the capital Bamako.

Plague outbreak kills 40 in Madagascar: WHO

Nov 22, 2014

An outbreak of plague has killed 40 people in Madagascar, the World Health Organization said, warning that the disease could spread rapidly in the country's densely populated capital Antananarivo.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.