Toward real time observation of electron dynamics in atoms and molecules

March 9, 2011

Another step has been taken in matter imaging. By using very short flashes of light produced by a technology developed at the national infrastructure Advanced Laser Light Source (ALLS) located at INRS University, researchers have obtained groundbreaking information on the electronic structure of atoms and molecules by observing for the first time ever electronic correlations using the method of high harmonic generation (HHG).

Made by a team of researchers from the Energy, Materials, and Telecommunications Center of INRS and the National Research Council Canada/University of Ottawa Joint Science Laboratory, this scientific breakthrough opens new opportunities for investigating electron dynamics on the timescale of the attosecond.

Researchers used a new laser source developed at ALLS by Professor François Légaré's team from the Energy, Materials, and Telecommunications Center in collaboration with colleagues from INRS University, NRC Canada, and the University of Ottawa. This laser source proves to be an ideal tool for HHG from atoms and molecules. The HHG spectra obtained through interaction of the laser source with xenon provide information on electronic correlations by highlighting the giant resonance of xenon. In addition, results obtained at ALLS show that the laser source is ideal for developing a soft X-ray beamline delivering ultrafast x-ray pulses down to the nanometer wavelength.

Built on national scientific collaboration, this study was conducted at ALLS by researchers Bruno E. Schmidt, Jean-Claude Kieffer, and François Légaré of the Energy, Materials, and Telecommunications Center of INRS and by Andrew D. Shiner, Carlos Trallero-Herrero, Hans J. Wörner, Serguei Patchkovskii, Paul B. Corkum, and David M. Villeneuve of the NRC Canada/University of Ottawa Joint Attosecond Science Laboratory. The project was funded by the Natural Sciences and Engineering Research Council of Canada, Fonds québécois de recherche sur la nature et les technologies, the Canadian Institute for Photonic Innovations, and the Canada Foundation for Innovation.

Explore further: K-State attosecond research could aid Homeland Security

More information: Research results have just been published in the prestigious journal Nature Physics.

Related Stories

K-State attosecond research could aid Homeland Security

May 21, 2007

Building a new laser-like X-ray source powerful and quick enough to capture fast motion in the atomic world is a big job. But Zenghu Chang, Kansas State University professor of physics, and his team of physicists and engineers ...

Scientists track electrons in molecules

June 13, 2010

( -- Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will facilitate observations ...

Physicists observe electron ejected from atom for first time

October 12, 2010

Physicists at the University of California, Berkeley in collaboration with researchers from the Max Planck Institute of Quantum Optics and the U.S. Department of Energy's Lawrence Berkeley National Laboratory, became the ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.