Now you see him

Mar 08, 2011 By Janet Wilson
Chilean native Gunther Uhlmann is a pioneer in “transformation optics,” which involves the distortion of space to control the trajectories of light waves. Credit: Steve Zylius and Hoang X. Pham / University Communications

Imagine if Harry Potter’s cloak were real , or that you could blot out the sight of something as easily as pressing a mute button to eliminate sound. To some, this seems like “pi in the sky” – fantastic dreams shared by science fiction writers and mathematicians alike.

But UC Irvine’s newly arrived Excellence in Teaching Chair in Mathematics says breakthrough equations show that it can be done.

“Just as sound waves can be redirected, light waves could too,” said Gunther Uhlmann at a recent physical sciences breakfast lecture, demonstrating the teaching skills that have won him numerous awards. Using H.G. Wells’ The Invisible Man, the cartoon character Invisible Woman, dolphins, CT scans and even the occasional math theorem, he introduced himself and his work.

Much of Uhlmann’s research has focused on so-called inverse properties – using precise measurements of electromagnetic waves to reveal tumors in breast tissue, for instance, or oil deposits beneath the Earth’s surface. But he and other researchers are also hard at work trying to translate theorems into, well, nothing. Over the last few years, several scientific journals have published their findings on “transformation optics,” which Science called one of the top 10 insights of the past decade.

The essence of the “cloak of invisibility” goes something like this: When you dip a straw into a glass of drinking water, it appears to bend and break at the point it enters the water. The same is true in fishing, Uhlmann notes: While you may spy your potential catch underwater, you’re not actually seeing it where it is.

Light "bends" when it hits water. The same principle could be used to bend rays around an object, making it invisible. Credit: Ortwin Hess / University of Surrey

That’s because light rays are refracted by the glassy surface, which alters their electromagnetic fields, slowing them down and shifting their path. Engineers and physicists are attempting to create “metamaterials” that would turn light waves even more dramatically, curving them in a ring around an object and rendering it invisible Anyone looking at the rays, though, would still see them as straight lines appearing to go through thin air. Metamaterials don’t exist yet, Uhlmann says, but “there is intensive research being done.”

A native of Chile who earned a doctorate at the Massachusetts Institute of Technology, the math professor was recruited from the University of Washington, and UCI officials are thrilled that he is here.

“Uhlmann’s work on the development of new mathematical techniques has the potential to make seemingly impossible technology possible,” says Kenneth Janda, interim dean of physical sciences. “His work on invisibility is especially innovative. In the future, we may learn how to make light rays go around objects as if they had passed straight through them.”

Math department Chair Hongkai Zhao says: “We are delighted and proud that Professor Uhlmann is at UCI. He is recognized as the world leader in mathematical theory of inverse problems. He not only develops rigorous and beautiful mathematical theory but also cares about real applications.”

A past Sloan Fellow, Guggenheim Fellow and recipient of a UC Berkeley Chancellor’s Award for excellence in research and teaching, Uhlmann was awarded the Bocher Memorial Prize in January by the American Mathematical Society for outstanding published research, and he has been selected to deliver the annual AMS Einstein Public Lecture in Mathematics in March 2012.

Uhlmann says he’s happy to be at UCI, both because of its academic excellence and the Southern California sunshine. And he’s got theories about ocean waves and invisibility too. If the right metamaterials could be developed on a large enough scale, Uhlmann says, it might be possible down the road to redirect tsunamis around “invisible” continents. “Maybe your great-grandchidlren will see this application of Harry Potter’s cloak some day,”

Explore further: Researcher figures out how sharks manage to act like math geniuses

add to favorites email to friend print save as pdf

Related Stories

Scientists closer to making invisibility cloak a reality

Mar 05, 2009

J.K. Rowling may not have realized just how close Harry Potter's invisibility cloak was to becoming a reality when she introduced it in the first book of her best-selling fictional series in 1998. Scientists, however, have ...

Tsunami Invisibility Cloak

Sep 26, 2008

Rather than building stronger ocean-based structures to withstand tsunamis, it might be easier to simply make the structures disappear.

Invisibility cloaks may be just around the corner

Mar 04, 2011

In 1897, H.G. Wells created a fictional scientist who became invisible by changing his refractive index to that of air, so that his body could not absorb or reflect light. More recently, Harry Potter disappeared ...

Recommended for you

Scholar tracks the changing world of gay sexuality

2 hours ago

With same-sex marriage now legalized in 19 states and laws making it impossible to ban homosexuals from serving in the military, gay, lesbian and bisexual people are now enjoying more freedoms and rights than ever before.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

SashaWants2Rock
5 / 5 (2) Mar 08, 2011
Jeeeeez I am not going to read anymore of these invisibility cloak stories until they stop saying "it can be done" and roll out dismal results. I want them to unveil something really big and exciting!
dan42day
3.7 / 5 (3) Mar 08, 2011
But Sasha, in this case even if they did, you still wouldn't be able to see it!