Neutron analysis yields insight into bacteria for solar energy

March 23, 2011
Chlorosomes (shown in green) capture and transfer light energy to the reaction center for photosynthesis in bacteria. New research from Oak Ridge National Laboratory reveals that the chlorosomes maintain their structure even under extreme conditions.

Structural studies of some of nature's most efficient light-harvesting systems are lighting the way for new generations of biologically inspired solar cell devices.

Researchers from Washington University in St. Louis and the Department of Energy's Oak Ridge National Laboratory used small-angle neutron scattering to analyze the structure of in green photosynthetic . Chlorosomes are efficient at collecting sunlight for conversion to energy, even in low-light and extreme environments.

"It's one of the most efficient light harvesting antenna complexes found in nature," said co-author and research scientist Volker Urban of ORNL's Center for Structural Molecular Biology, or CSMB.

Neutron analysis performed at the CSMB's Bio-SANS instrument at the High Flux Isotope Reactor allowed the team to examine chlorosome structure under a range of thermal and ionic conditions.

"We found that their structure changed very little under all these conditions, which shows them to be very stable," Urban said. "This is important for potential biohybrid applications – if you wanted to use them to harvest light in synthetic materials like a hybrid solar cell, for example."

The size, shape and organization of light-harvesting complexes such as chlorosomes are critical factors in electron transfer to semiconductor electrodes in solar devices. Understanding how chlorosomes function in nature could help scientists mimic the chlorosome's efficiency to create robust biohybrid or bio-inspired .

"What's so amazing about the chlorosome is that this large and complicated assembly is able to capture light effectively across a large area and then funnel the light to the reaction center without losing it along the way," Urban said. "Why this works so well in chlorosomes is not well understood at all."

"We're trying to find out general principles that are important for capturing, harvesting and transporting efficiently and see how nature has solved that," Urban said.

Small-angle neutron scattering enabled the team to clearly observe the complicated biological systems at a nanoscale level without damaging the samples.

"With neutrons, you have an advantage that you get a very sharp contrast between these two phases, the chlorosome and the deuterated buffer. This gives you something like a clear black and white image," Urban said.

Explore further: Natural solar collectors on butterfly wings inspire more powerful solar cells

Related Stories

Recommended for you

Bacterial diversity in soils was shaped by ice ages

May 26, 2016

From a pharmaceutical perspective, few microbes have been as valuable as Streptyomyces: This genus of bacteria is the source of 80 percent of antibiotics in use today. A new study of its distribution in North American soils ...

Is aging inevitable? Not necessarily for sea urchins

May 25, 2016

Sea urchins are remarkable organisms. They can quickly regrow damaged spines and feet. Some species also live to extraordinary old ages and—even more remarkably—do so with no signs of poor health, such as a decline in ...

Why fruit fly sperm are giant

May 25, 2016

In the animal kingdom, sperm usually are considerably smaller than eggs, which means that males can produce far more of them. Large numbers of tiny sperm can increase the probability of successful fertilization, especially ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.