Nanodiamonds take big step toward battling cancer

Mar 09, 2011

Chemotherapy drug resistance contributes to treatment failure in more than 90 percent of metastatic cancers. Overcoming this hurdle would significantly improve cancer survival rates.

Dean Ho, an associate professor of biomedical engineering and mechanical engineering at Northwestern University, believes a tiny carbon particle called a nanodiamond may offer an effective drug delivery solution for hard-to-treat cancers.

In studies of liver and models in vivo, Ho and a multidisciplinary team of scientists, engineers and clinicians found that a normally lethal amount of a chemotherapy drug when bound to nanodiamonds significantly reduced the size of tumors in mice. Survival rates also increased and no toxic effects on tissues and organs were observed.

This is the first work to demonstrate the significance and translational potential of nanodiamonds in the treatment of chemotherapy-resistant cancers. The results will be published March 9 in the journal Science Translational Medicine.

"Our results show the nanodiamond's enormous translational potential towards significantly improving the efficacy of drug-resistant and simultaneously improving safety," said Ho, who led the research and is corresponding author of the paper. "These are critical benefits. We chose to study these chemo-resistant cancers because they remain one of the biggest barriers to treating cancer and improving patient survival."

Ho is with Northwestern's McCormick School of Engineering and Applied Science and is a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Nanodiamonds are carbon-based materials approximately 2 to 8 in diameter. Each nanodiamond's surface possesses functional groups that allow a wide spectrum of compounds to be attached to it, including .

The researchers took these nanodiamonds and reversibly bound the common chemotherapy drug to them using a scalable synthesis process, which enhances sustained drug release.

Ho and his colleagues studied mouse models with liver and breast cancers. In these resistant cancers, drugs are able to get inside the tumors but are kicked right back out because of an innate response in the liver and breast to expel these drugs.

They treated one group of animals with the doxorubicin-nanodiamond complexes and another group with the drug alone. In those treated with the nanodiamond complexes, the chemotherapeutic remained in circulation longer -- up to 10 times longer -- than those treated with the drug alone. In addition, the drug itself was retained within both types of tumors for a significantly longer period of time. Such a high retention rate means a smaller amount of the very toxic drug would need to be administered, thus reducing side effects.

The researchers also found that the drug-nanodiamond complexes had no negative effect on the white blood cell count. This is especially important for cancer treatment: if the white blood cell count drops below a certain level, treatment is stopped due to the risk of major complications.

"Nanodiamonds have excellent biocompatibility, and the process of formulating nanodiamond-drug complexes is very inexpensive," said Edward K. Chow, a postdoctoral fellow with the G.W. Hooper Foundation and the University of California, San Francisco, and first author of the paper. "Nanodiamonds possess numerous hallmarks of an ideal drug delivery system and are promising platforms for advancing cancer therapy."

Explore further: Research reveals how our bodies keep unwelcome visitors out of cell nuclei

More information: The paper is titled "Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment."

Related Stories

Nanodiamond Drug Device Could Transform Cancer Treatment

Oct 27, 2008

A team of investigators at Northwestern University has developed a promising nanomaterial-based biomedical device that could be used to deliver chemotherapy drugs locally to sites where cancerous tumors have been surgically ...

Nanodiamonds deliver insulin for wound healing

Jul 27, 2009

(PhysOrg.com) -- Bacterial infection is a major health threat to patients with severe burns and other kinds of serious wounds such as traumatic bone fractures. Recent studies have identified an important new weapon for fighting ...

Game-changing nanodiamond discovery for MRI

Jan 14, 2010

A Northwestern University study shows that coupling a magnetic resonance imaging (MRI) contrast agent to a nanodiamond results in dramatically enhanced signal intensity and thus vivid image contrast.

Nanodiamonds Advance Anticancer Gene Therapy

Sep 25, 2009

(PhysOrg.com) -- Gene therapy holds promise in the treatment of cancer as well as a large number of other diseases. However, developing a scalable system for delivering genes to cells both efficiently and safely has been ...

Promise of nanodiamonds for safer gene therapy

Sep 01, 2009

Gene therapy holds promise in the treatment of a myriad of diseases, including cancer, heart disease and diabetes, among many others. However, developing a scalable system for delivering genes to cells both efficiently and ...

Recommended for you

Nanomaterials to preserve ancient works of art

2 hours ago

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

2 hours ago

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

Protons fuel graphene prospects

Nov 26, 2014

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.