Molecular mechanism contributing to neuronal circuit formation found

Mar 07, 2011

German scientists at Helmholtz Zentrum Munchen have discovered how sensory and motor fibers interact during development of neuronal circuits in the limbs: Both types of nerve fibers can guide this process. With this finding, the researchers have made an important contribution to understanding how neural networks are formed during embryonic development and have found a new approach to explaining neurological disorders.

During , sensory and motor fibers interact to form nerves in the limbs. The research team led by Dr. Andrea Huber Brösamle of the Institute of Developmental Genetics of Helmholtz Zentrum München has now elucidated how this interaction functions at the molecular level: The cell surface receptor neuropilin-1 is present in both sensory and motor fibers and controls their interaction in order to correctly regulate growth.

"We observed that motor and sensory axons were both able to guide and lead the formation of the spinal nerves of the arms and legs," said Rosa-Eva Hüttl and Heidi Söllner, lead authors of the study and doctoral students in Dr. Andrea Huber Brösamle's research group. This finding surprised the authors because it had previously been assumed that the motor axons were always responsible for establishing the correct trajectories.

In the same study, the researchers created a model to better elucidate structural changes in human neurodegenerative disorders and following trauma : "Our next goal," said Dr. Huber Brösamle, "is to find out to what extent neuropilin-1 also controls the formation of fiber tracts in the brain."

Explore further: New mapping approach lets scientists zoom in and out as the brain processes sound

More information: Huettl R.E. et al. (2011). Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb. PLoS Biol 9(2): e1001020. doi:10.1371/journal.pbio.1001020

Provided by Helmholtz Zentrum Munchen

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Newly Discovered Gene Mutation Linked to Nerve Diseases

Dec 28, 2009

(PhysOrg.com) -- Researchers from the Northwestern University Feinberg School of Medicine have identified mutations in the gene for TRPV4 that cause two related degenerative motor nerve disorders, scapuloperoneal spinal muscular ...

Mutation may cause inherited neuropathy

Dec 26, 2007

Mutations in a protein called dynein, required for the proper functioning of sensory nerve cells, can cause defects in mice that may provide crucial clues leading to better treatments for a human nerve disorder known as peripheral ...

Promising new nanotechnology for spinal cord injury

Apr 02, 2008

A spinal cord injury often leads to permanent paralysis and loss of sensation below the site of the injury because the damaged nerve fibers can't regenerate. The nerve fibers or axons have the capacity to grow again, but ...

Protein is linked to functional development of brain neurons

Jun 18, 2007

Rockefeller University investigators say that a molecule that helps transport cargo inside nerve cells may have another, critically important, role related to how developing neurons sprout the projections that relay electrical ...

Recommended for you

Birthday matters for wiring-up the brain's vision centers

20 hours ago

Researchers at the University of California, San Diego School of Medicine have evidence suggesting that neurons in the developing brains of mice are guided by a simple but elegant birth order rule that allows them to find ...

How is depression related to dementia?

Jul 30, 2014

A new study by neuropsychiatric researchers at Rush University Medical Center gives insight into the relationship between depression and dementia. The study is published in the July 30, 2014, online issue of Neurology, the me ...

User comments : 0