Using a molecular switch to turn on cancer vaccines

Mar 07, 2011

The immune system is capable of recognizing tumor growth, and naturally mounts an anti-cancer defense. Dendritic cells (DCs) can take up tumor-derived molecules (antigens) and present them to T cells, and those "primed" T cells are then able to recognize and kill tumor cells.

In recent years, researchers have attempted to capitalize upon these natural immune responses to develop new therapies- namely, by generating a pool of tumor antigen-pulsed DCs that might be used as vaccines to augment the T-cell responses of . In clinical trials, these DC vaccines have had limited success, in part because the protocols to generate mature and active DCs in vitro are imperfect. Specifically, generation of mature DCs requires activation of Toll-Like receptors (TLRs), usually achieved by administration of lipopolysaccharide, which can cause toxic shock in humans and can promote apoptosis.

In this paper, David Spencer and colleagues, of Baylor University in Houston, Texas, addressed this problem by looking to the adaptor molecule downstream of the TLR, MyD88. They engineered a form of MyD88 that could induce downstream signaling in response to a drug, and expressed this inducible MyD88 (iMyD88) in DCs. Further, the researchers combined iMyD88 with a second pathway required for optimal activation of DCs- CD40 signaling- so that they could control both pathways with administration of a single drug. This combination improved DC-mediated tumor antigen-specific T cell responses in mouse cancer models and T cell responses to human tumor antigens. The researchers hope that this "switch" might be broadly applicable to the design of DC vaccines.

Explore further: Natural products from plants protect skin during cancer radiotherapy

More information: View this article at: www.jci.org/articles/view/4432… 56347f1f6448c0426b53

Provided by Journal of Clinical Investigation

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Self-help -- tumors promote their own metastasis

Apr 30, 2010

Current research suggests that tumor-secreted exosomes inhibit the immune response, enhancing tumor metastasis. The related report by Liu et al, "Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived ...

Inducing melanoma for cancer vaccine development

Mar 27, 2006

Cancer vaccines are being investigated in early-phase clinical trials around the world, with many of those trials recruiting patients with melanoma. Although tumor regressions have been seen in 10% to 20% of patients with ...

Study uses the patient's tumor to form vaccine

Nov 24, 2010

A new process for creating a personalized vaccine may become a crucial tool in helping patients with colorectal cancer develop an immune response against their own tumors. This dendritic cell (DC) vaccine, developed at Dartmouth ...

Mechanisms involved with tumor relapse identified

Mar 13, 2007

Researchers at Virginia Commonwealth University’s Massey Cancer Center studying the interaction between the immune system and cancer cells have identified interferon gamma as one of the signaling proteins involved with ...

'Super' enzyme may lead way to better tumor vaccines

Dec 04, 2006

A "super" form of the enzyme Akt1 could provide the key to boosting the effect of tumor vaccines by extending the lives of dendritic cells, the immune-system master switches that promote the response of T-cells, which attack ...

Recommended for you

Incomplete HPV vaccination may offer some protection

1 hour ago

Minority women who received the Human Papillomavirus Vaccination (HPV) even after becoming sexually active had lower rates of abnormal Pap test results than those who were never vaccinated. These findings appear in the journal ...

New imaging agent provides better picture of the gut

1 hour ago

A multi-institutional team of researchers has developed a new nanoscale agent for imaging the gastrointestinal (GI) tract. This safe, noninvasive method for assessing the function and properties of the GI tract in real time ...

User comments : 0