Using a molecular switch to turn on cancer vaccines

March 7, 2011

The immune system is capable of recognizing tumor growth, and naturally mounts an anti-cancer defense. Dendritic cells (DCs) can take up tumor-derived molecules (antigens) and present them to T cells, and those "primed" T cells are then able to recognize and kill tumor cells.

In recent years, researchers have attempted to capitalize upon these natural immune responses to develop new therapies- namely, by generating a pool of tumor antigen-pulsed DCs that might be used as vaccines to augment the T-cell responses of . In clinical trials, these DC vaccines have had limited success, in part because the protocols to generate mature and active DCs in vitro are imperfect. Specifically, generation of mature DCs requires activation of Toll-Like receptors (TLRs), usually achieved by administration of lipopolysaccharide, which can cause toxic shock in humans and can promote apoptosis.

In this paper, David Spencer and colleagues, of Baylor University in Houston, Texas, addressed this problem by looking to the adaptor molecule downstream of the TLR, MyD88. They engineered a form of MyD88 that could induce downstream signaling in response to a drug, and expressed this inducible MyD88 (iMyD88) in DCs. Further, the researchers combined iMyD88 with a second pathway required for optimal activation of DCs- CD40 signaling- so that they could control both pathways with administration of a single drug. This combination improved DC-mediated tumor antigen-specific T cell responses in mouse cancer models and T cell responses to human tumor antigens. The researchers hope that this "switch" might be broadly applicable to the design of DC vaccines.

Explore further: Inducing melanoma for cancer vaccine development

More information: View this article at: www.jci.org/articles/view/44327?key=56347f1f6448c0426b53

Related Stories

Inducing melanoma for cancer vaccine development

March 27, 2006

Cancer vaccines are being investigated in early-phase clinical trials around the world, with many of those trials recruiting patients with melanoma. Although tumor regressions have been seen in 10% to 20% of patients with ...

'Super' enzyme may lead way to better tumor vaccines

December 4, 2006

A "super" form of the enzyme Akt1 could provide the key to boosting the effect of tumor vaccines by extending the lives of dendritic cells, the immune-system master switches that promote the response of T-cells, which attack ...

Mechanisms involved with tumor relapse identified

March 13, 2007

Researchers at Virginia Commonwealth University’s Massey Cancer Center studying the interaction between the immune system and cancer cells have identified interferon gamma as one of the signaling proteins involved with ...

Self-help -- tumors promote their own metastasis

April 30, 2010

Current research suggests that tumor-secreted exosomes inhibit the immune response, enhancing tumor metastasis. The related report by Liu et al, "Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived ...

Study uses the patient's tumor to form vaccine

November 24, 2010

A new process for creating a personalized vaccine may become a crucial tool in helping patients with colorectal cancer develop an immune response against their own tumors. This dendritic cell (DC) vaccine, developed at Dartmouth ...

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.