Microfabrication: The light approach

Mar 04, 2011 By Lee Swee Heng
Optical microscopy image of a fully connected hexagonal network of microwires prepared by the self-assembly of gold nanoparticles on a photoresist template.

Materials that conduct electricity but which are also transparent to light are important for electronic displays, cameras and solar cells. The industry’s standard material for these applications is indium tin oxide (ITO), but the spiraling cost and limited supply of indium has prompted a search for alternatives.

One promising approach is to build mesh-like networks of ultrathin conducting metal wires that light can pass through. Ivan Vakarelski at the A*STAR Institute of Chemical and Engineering Sciences and Xiaosong Tang and Sean O’Shea at the A*STAR Institute of Materials Research and Engineering have now refined the process of making these tiny meshes so that it is feasible for large-scale manufacturing.

The secret to fabricating such intricate microstructures is to encourage metal nanoparticles to assemble themselves from a liquid suspension. This requires a predefined template to guide the self-assembly—in the same way that coffee granules assemble into a ring under a cup as spilt liquid evaporates.

A few years ago, Vakarelski and his co-workers demonstrated the possibility of using latex microparticles as a template for such a mesh using a solution containing gold nanoparticles. “As the solvent evaporated, a liquid bridge network developed around the latex particles, leaving behind a network of microwires formed by the self-assembly of the gold particles,” explains O’Shea. “This is an easy approach for research purposes, but is difficult to control on a manufacturing scale.”

To tackle this problem, the researchers turned to the technique of photolithography, which involves using to draw patterns in a photoresist film. The exposed and hardened parts of the photoresist then act as a precise template for self-assembly of gold nanoparticles. “It is difficult, however,” says Vakarelski, “to produce spheres replicating the latex particle template using photolithography. We tried several alternative structures and found that arched structures work just as well.”

Using photolithography to produce a template of arch-like structures and the same solution of gold nanoparticles, the researchers prepared a high-quality gold microwire mesh (pictured) with conductance and transparency comparable to those of high-grade ITO. “An added advantage of the arched structures is that, unlike latex microparticles, we are not restricted to a hexagonal network topology,” says O’Shea. Indeed, the researchers successfully produced networks of rectangles, hexagons and triangles. “Using this technique we plan to explore special functional networks using other types of particles, including semiconducting particles, magnetic particles, carbon nanotubes, DNA and proteins,” says Vakarelski.

Explore further: Chemical vapor deposition used to grow atomic layer materials on top of each other

More information: Tang, X., et al, I. U. Photoresist templates for wafer-scale defect-free evaporative lithography. Advanced Materials 22, 5150–5153 (2010). dx.doi.org/10.1002/adma.201002644

Provided by Agency for Science, Technology and Research (A*STAR)

5 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Gold and silver nano baubles

Dec 03, 2010

They might just be the smallest Christmas tree decorations ever. Tiny spherical particles of gold and silver that are more than 100 million times smaller than the gold and silver baubles used to decorate seasonal fir trees ...

New Self-Assemble Building Blocks for Nanotechnology

Aug 19, 2004

University of Michigan researchers have discovered a way to self-assemble nanoparticles into wires, sheets, shells and other unusual structures using sticky patches that make the particles group themselves together in progra ...

Recommended for you

Making 'bucky-balls' in spin-out's sights

11 hours ago

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Polymer microparticles could help verify goods

Apr 13, 2014

Some 2 to 5 percent of all international trade involves counterfeit goods, according to a 2013 United Nations report. These illicit products—which include electronics, automotive and aircraft parts, pharmaceuticals, ...

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.