Researchers discover new shapes of microcompartments

March 4, 2011

In nature and engineering, microcompartments — molecular shells made of proteins that can encapsulate cellular components — provide a tiny home for important reactions. In bacterial organelles, for example, microcompartments known as carboxysomes trap carbon dioxide and convert it into sugar as an energy source.

These shells naturally buckle into a specialized 20-sided called an icosahedron. But now researchers at Northwestern University's McCormick School of Engineering and Applied Science have discovered and explored new shapes of microcompartment shells. Understanding just how these shells form could lead to designed microreactors that mimic the functions of these cell containers or deliver therapeutic materials to cells at specific targeted locations.

The research, led by Monica Olvera de la Cruz, professor of materials science and chemical and biological engineering and chemistry, with Graziano Vernizzi, research assistant professor, and research associate Rastko Sknepnek, was recently published in the .

Olvera de la Cruz and her group knew how shells made up of just one structural unit worked — their elasticity and rigidity cause them to naturally buckle into icosahedra. But they began considering how to create heterogenous shells by using more than one component. Using physical concepts, mathematical analysis, and running simulations, they formulated a new model for the spontaneous faceting of shells.

"The question was: if a shell is made up of components that have different rigidities or different mechanical properties, what would be the shape it takes?" Olvera de la Cruz said.

The only faceted shape previously known for molecular closed shells, such as viruses and fullerenes, was the icosahedron. But Olvera de la Cruz and her colleagues discovered that when a shell is made up of two components with different elasticities, they buckle into many different shapes, including dodecahedra (12 sides) and octahedra (8 sides) and irregular polyhedra, which surfaces are "decorated" by the natural segregation of components to yield the lowest energy conformation.

Some of these shapes had been seen in nature before — sometimes in the bacterial organelles' carboxysomes — but they were just called "quasi-icosahedra" because nobody knew how to characterize them and how they worked. Armed with their model, however, engineers could now potentially design shells to perform specific tasks.

"If you just want to pack something into a shell, you use a sphere," she said. "But if you want to create a shell that has intelligence and can fit somewhere perfectly because it is decorated with the right proteins, then you can use different shapes."

These designed shells could act as containers or microreactors within the body. "It's a very efficient way to deliver something," she said.

Next the group hopes to determine how general their model is and continue researching how different shapes are made.

"I think it can open a new field of research," Olvera de la Cruz said.

Explore further: New Self-Assemble Building Blocks for Nanotechnology

Related Stories

New Self-Assemble Building Blocks for Nanotechnology

August 19, 2004

University of Michigan researchers have discovered a way to self-assemble nanoparticles into wires, sheets, shells and other unusual structures using sticky patches that make the particles group themselves together in programmed ...

U-M team makes synthetic mother of pearl

March 17, 2005

It's possible to grow thin films of mother of pearl in the laboratory that are even stronger than the super-strong material that naturally lines the inside of abalone shells. The trick is to add compounds normally found in ...

Strength is shore thing for sea shell scientists

March 8, 2010

(PhysOrg.com) -- Scientists have made synthetic 'sea shells' from a mixture of chalk and polystyrene cups - and produced a tough new material that could make our homes and offices more durable.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.