New method for preparation of high-energy carbon-carbon double bonds

Mar 23, 2011

A new catalytic chemical method for the synthesis of a large and important class of carbon-carbon double bonds has been developed by scientists from Boston College and MIT, the team reports in the journal Nature. The findings substantially expand the versatility of a set of metal-based catalysts discovered only three years ago by the researchers.

With at their core, the catalysts have now proven capable of generating the higher-energy of an alkene molecule from two simpler and much more readily accessible terminal versions, the team reports in an article in the current edition of the journal.

–carbon double bonds, also referred to as alkenes or olefins, are present in many medicinally relevant and biologically active molecules. Co-author Richard Schrock of MIT shared the 2005 Nobel Prize in Chemistry for discovering one of the earliest types of olefin metathesis catalysts.

Alkenes exist as either the zigzag shaped trans olefin, or the E isomer, while others take the "U" shape of the cis olefin, or the higher-energy Z isomer. Catalytic methods for the synthesis of Z alkenes, particularly through olefin metathesis, have been sought after by many research teams in the world but had thus far proved elusive, said Amir Hoveyda, the primary author of the paper and the Joseph T. and Patricia Vanderslice Millennium Professor of Chemistry at Boston College.

Z isomers require a catalyst that must be sufficiently active to be capable of promoting the chemical reaction while maintaining the cis olefin's U-shape geometry. Preserving both characteristics in a catalyst leads to reactions that deliver Z-alkenes, which can be found in a large number of medicinally significant molecules and are used as starting materials for some of the most commonly used transformations in chemistry.

"These higher energy carbon-carbon double bonds are incredibly important to chemists and researchers in various areas such as medicinal chemistry, chemical biology, organic synthesis and materials research," said Hoveyda. "The trick here was to come up with a catalyst that is active enough to promote Z-alkene formation but not too active to also want to react with the product. So, in a way, we had to walk on a very tight rope. Olefin metathesis is a reversible reaction and you always run the risk of going back and forth between product and starting material, which forces you to end up with a lower energy and less desirable isomer. What we have found are catalysts that are sufficiently active to promote this difficult reaction but are also discriminating enough not to go after the product and cause it to isomerize."

Using the highly abundant and inexpensive metal molybdenum, Hoveyda and his colleagues show the can produce a Z-selective "cross metathesis" reaction – an olefin metathesis reaction in which two different alkene-containing molecules are fused into a single molecule, generating only ethylene, the smallest possible alkene-containing molecule, as the byproduct. By simply running their reactions in a vacuum, the team discovered that removal of generated olefin can significantly improve the desired process and yield unprecedented levels of reactivity and selectivity.

The researchers demonstrated the special versatility of their new catalytic method through synthesis of a potent antioxidant plasmalogen phospholipid, molecules critical to cellular function that have been implicated in Alzheimer's disease, as well as the potent immunostimulant KRN7000, which has been shown to combat tumors, autoimmune disease and graft-versus-host disease in mice.

The of such biologically relevant molecules further proves the far-reaching importance of , Hoveyda said. In the case of the anti-oxidant, the carbon-carbon double bond marked the end-point in the creation of the compound. For the immunostimulant, the creation of the Z double bond proved to be most critical in subsequent structural modifications required to reach the final target.

Explore further: Smartgels are thicker than water

Related Stories

Recommended for you

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Parsec
5 / 5 (2) Mar 23, 2011
This is huge. I think people understand easily what it means to add a completely new type of tool, like memisters to the toolset of electronic components, but adding a completely new synthesis technique has far greater potential to affect our daily lives in unimaginable ways.
TabulaMentis
not rated yet Mar 24, 2011
Without bending my mind too much, I wonder if this tech could be used for clean coal processing?