Marine methane reservoirs much larger 550 million years ago

March 22, 2011

Massive methane reservoirs in the ancient ocean could account for an unexplained hiccup in Earth's carbon cycle.

In the latest issue of the , Christian J. Bjerrum and Don E. Canfield devised a to examine the Shuram-Wonoka anomaly, a planet-wide shift in the chemical composition of marine sediments some 550 million years ago.

During the anomaly, the fraction of isotopically heavy plummeted to levels that violate the currently accepted view of Earth's .

The authors' model attempts to explain the anomaly by assuming that methane reservoirs, some 2 to 30 times larger than those in existence today, erupted into the atmosphere in a geologically rapid, 2-million-year-long hiccup.

Researchers have long known that methane gas becomes trapped in ice-like cages of that form under the immense pressures and low temperatures of the deep ocean. Some studies have proposed that magma intrusions or sudden drops in sea level can release large reservoirs of the trapped gas into the atmosphere.

According to the authors, the ocean and atmosphere were chemically different at the time of the Shuram-Wonoka anomaly compared with today and would have been unable to quickly remove a rapid infusion of methane.

Accounting for these differences, the authors report, allows their model to reproduce the unique isotopic signature that characterizes Shuram-Wonoka marine sediments.

Explore further: Just How Significant Is Methane On Titan?

More information: "Towards a quantitative understanding of the Late Neoproterozoic carbon cycle," by Christian J. Bjerrum and Don E. Canfield, Proceedings of the National Academy of Sciences (2011)

Related Stories

Just How Significant Is Methane On Titan?

September 12, 2005

Titan's second most abundant constituent, methane, is critical to the maintenance of an earth-like nitrogen atmosphere on this satellite. Without methane, Titan's nitrogen would condense, leaving behind a puny amount in ...

The rise of oxygen caused Earth's earliest ice age

May 7, 2009

(PhysOrg.com) -- Geologists may have uncovered the answer to an age-old question - an ice-age-old question, that is. It appears that Earth's earliest ice ages may have been due to the rise of oxygen in Earth's atmosphere, ...

Recommended for you

New study sheds light on end of Snowball Earth period

August 24, 2015

The second ice age during the Cryogenian period was not followed by the sudden and chaotic melting-back of the ice as previously thought, but ended with regular advances and retreats of the ice, according to research published ...

Earth's mineralogy unique in the cosmos

August 26, 2015

New research from a team led by Carnegie's Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.