Researchers link novel biomarkers to asthma and COPD

Mar 11, 2011

Four novel biomarkers have been identified which may aid in the diagnosis and management of asthma and chronic obstructive pulmonary disease (COPD), according to a study conducted by researchers in Australia, who determined the biomarkers may be used in different combinations to successfully identify patients with either of the airway diseases. In conducting the study, the researchers relied on proteomics, an emerging field of science that focuses on the structure and functions of an organism's proteins.

The findings were published online ahead of the print edition of the American Thoracic Society's .

"Using a proteomics approach, we have identified a panel of four blood-based biomarkers that, when used in combination, can discriminate between healthy controls, asthmatics and individuals with COPD, and has the potential to be a valuable tool in the clinical diagnosis of respiratory disease," said Peter G. Gibson, MD, conjoint professor at the University of Newcastle's
School of Medicine and Public Health. "The proteins in the diagnostic biomarker panel are all involved in the regulation of inflammation, and usually function as anti-inflammatory proteins.

"These results were confirmed in a second clinical population of older adults with airflow obstruction," he added.

The proteins identified in the study are predominantly liver-synthesized proteins that can have important anti-inflammatory activity through the inhibition of oxidative stress, which has been implicated in several diseases, including heart disease, Alzheimer's disease and Parkinson's disease.

To identify potential biomarkers, blood samples were collected from 43 subjects with a mean age of 48 years, including 21 with asthma, five with COPD and 17 healthy controls. Using proteomic techniques, plasma proteins were separated from all blood samples. Once protein biomarkers were identified and selected, the researchers measured the biomarkers' abilities, singly and in combination, to distinguish between the groups of patients.

To validate their results, the researchers conducted two additional assessments. In the first assessment, the original group was supplemented with an additional seven asthmatics and nine patients with COPD and repeated the biomarker assessment. The second assessment involved a separate population of 73 older subjects (over 55 years), including 14 with asthma, 22 with COPD, 14 with both conditions and 23 healthy controls. Results were confirmed in both validation groups.

Identifying biomarkers that are involved in the development of airway diseases may allow clinicians to diagnose the diseases in their earlier, and often more treatable, stages, Dr. Gibson noted.

"Our study identified a panel of highly discriminatory proteins that could be extremely useful in a clinical context," Dr. Gibson said. "Since these biomarkers are detectable in blood, which is readily obtainable from patients, and substances are currently available for testing the abundance of these proteins, this panel of biomarkers has the potential to become an extremely useful addition to the clinical diagnosis and management of respiratory disease."

Dr. Gibson noted proteomics played a vital role in the study, which was funded by the Australian government as part of its Cooperative Research Centre for Asthma and Airways program, and suggests the protein-based techniques may prove vital in future studies of biomarkers.

"Combined with well-defined clinical groups and advanced statistical analyses, we have shown that proteomics is a powerful tool for the identification of novel disease biomarkers," he said.

"The study is a good example of how high quality biological science can be translated effectively to a useful result for people with asthma and COPD. Future work is planned to study these markers in the lungs of patients with and COPD, and apply the results in different clinical settings."

Explore further: Liberia holds Senate vote amid Ebola fears

add to favorites email to friend print save as pdf

Related Stories

HATS off to combat asthma

Dec 04, 2007

Two University of Nottingham studies exploring the causes and treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD) could lead to the development of drugs to battle these debilitating conditions.

Recommended for you

Liberia holds Senate vote amid Ebola fears

1 hour ago

Health workers manned polling stations across Liberia on Saturday as voters cast their ballots in a twice-delayed Senate vote that has been criticized for its potential to spread the deadly Ebola disease.

Evidence-based recs issued for systemic care in psoriasis

21 hours ago

(HealthDay)—For appropriately selected patients with psoriasis, combining biologics with other systemic treatments, including phototherapy, oral medications, or other biologic, may result in greater efficacy ...

Bacteria in caramel apples kills at least four in US

21 hours ago

A listeria outbreak believed to originate from commercially packaged caramel apples has killed at least four people in the United States and sickened 28 people since November, officials said Friday.

Steroid-based treatment may answer needs of pediatric EoE patients

22 hours ago

A new formulation of oral budesonide suspension, a steroid-based treatment, is safe and effective in treating pediatric patients with eosinophilic esophagitis (EoE), according to a new study in Clinical Gastroenterology and Hepatology, the official clinical practice journal ...

Discovery of genes that predispose a severe form of COPD

Dec 19, 2014

A study by Ramcés Falfán-Valencia, researcher at the National Institute of Respiratory Diseases (INER), found that the mestizo Mexican population has a number of variations in certain genes that predispose ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.