Researchers find new light-sensing mechanism in neurons

March 3, 2011
This image shows blue-light sensing arousal neurons. Credit: UCI

A UC Irvine research team led by Todd C. Holmes has discovered a second form of phototransduction light sensing in cells that is derived from vitamin B2. This discovery may reveal new information about cellular processes controlled by light.

For more than 100 years, it had been believed that the phototransduction process was solely based on a chemical derived from vitamin A called retinal. Phototransduction is the conversion of light signals into in photoreceptive and underlies both image-forming and non-image-forming light sensing.

In discovering this new light-sensing phototransduction mechanism, the UCI scientists found that phototransduction can also be mediated by a called cryptochrome, which uses a B2 vitamin chemical derivative for light sensing. Cryptochromes are blue-light photoreceptors found in circadian and arousal neurons that regulate slow biochemical processes, but this is the first time they have been linked to rapid phototransduction.

Their work appears March 3 on online Express site for the journal Science.

"This is totally novel mechanism that does not depend on retinal," said Holmes, a professor of physiology & biophysics. "This discovery opens whole new technology opportunities for adapting light-sensing proteins to drive medically relevant cellular activities."

This basic science breakthrough – "which literally and figuratively came 'out of the blue,'" Holmes said – has implications in the fast-growing field of optogenetics. Optogenetics combines optical and genetic research techniques to probe neural circuits at the high speeds needed to understand brain information processing. In one area, it is being used to understand how treatments such as deep brain massage can aid people with neurodegenerative diseases.

Holmes' team found that cryptochrome mediates phototransduction directly in fruit fly circadian and arousal neurons in response to blue-light wavelengths. The researchers also found that they could genetically express cryptochrome in neurons that are not ordinarily electrically responsive to light to make them responsive.

Explore further: Algal protein in worm neurons allows remote control of behavior by light

Related Stories

More than meets the eye to staying awake, alert

May 13, 2010

Think twice before falling asleep alongside the glare of your computer and TV screens: exposure to dim light from ordinary room lights, computer screens and other electronic devices late at night may be interfering with our ...

Sharp-eyed robins can see magnetic fields

July 9, 2010

(PhysOrg.com) -- It has been known for decades that some birds are able to sense the Earth's magnetic field and set their direction as if following a compass heading, which is an extremely useful ability for birds migrating ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.