Japanese tsunami's effects will change how, where future nuclear power plants are built

Mar 16, 2011 By Ellen Goldbaum
Japanese tsunami's effects will change how, where future nuclear power plants are built
Seismically isolated platform in the North Pacific demonstrates how power plants can be built to withstand extreme conditions, says Constantinou of UB.

The design of next-generation nuclear power plants and other critical energy facilities will undoubtedly be influenced by the Japanese tsunami and its devastating effects on Japan's nuclear reactors, says Michael C. Constantinou, PhD, professor of civil, structural and environmental engineering at the University at Buffalo.

"If a is built at a site where a 30-foot tsunami wave is possible, if it comes, it is going to have a significant effect, there is no way to control for that," says Constantinou, a structural engineer, and researcher with UB's MCEER (Multidisciplinary Center for Earthquake Engineering Research.) He works on seismic protective systems that deflect and dissipate seismic energy and protect structures during earthquakes.

"The only way to prevent the situation is to build the plant further inland, to seismically isolate it and, perhaps, to elevate it," he says.

According to Constantinou, it is possible to seismically isolate an entire facility on a concrete platform.

"This is possible technologically, but much more complex," he says.

Constantinou is familiar with this technique, having consulted with UB colleague Andrew Whittaker on the design of seismically isolated offshore oil and gas drilling platforms in the North Pacific near Russia's Sakhalin islands, several hundred miles north of the epicenter of the March 11th Japanese earthquake.

"These platforms sit on concrete bases on the with legs that are about 80 meters tall, and the structure on top of the platform is another 20 stories high; the entire structure weighs some 30,000 tons," he explains.

"Conditions there are extreme," he continues. "It is a multi-hazard environment, where one hazard can worsen the effects of another. The platforms are designed to withstand, without failure or significant effect, major earthquakes, ice forces on platform legs where giant slabs of ice two meters thick can form, temperatures as low as -40, blasts and very large waves, on the order of 10 meters above the ocean's surface, which only may occur once every 10,000 years, and waves in combination with ice slabs," he says. "They are very difficult structures to design."

The offshore platforms, about 100 meters by 100 meters in plan dimensions, sit on four friction pendulum bearings, each of which has the capacity to safely carry 13,000 tons. The friction pendulum bearings allow structures to respond to strong earthquakes by swinging gently from side to side, like a pendulum, minimizing the risk of damage to the structure and the people who work inside it.

Constantinou says that the bearings, made of steel ductile to very low temperatures and which have a large displacement capacity and a capacity to carry such large loads, are the only ones suitable for the extreme conditions encountered in the North Pacific.

"It wouldn't be possible to use elastomeric -- rubber -- bearings, which are very frequently used in Japanese buildings," Constantinou explains. "At those very low temperatures, the rubber bearings become brittle and can shatter like glass. Also, these loads and displacement demands are too large for elastomeric bearings."

UB faculty often travel to countries and regions devastated by earthquakes, as part of international efforts to improve seismic design of buildings and infrastructure. Disaster mitigation, response to extreme events and multi-hazard engineering are research strengths of the university identified in the UB 2020 strategic plan.

Explore further: Team develop 'autotune' software to make it quicker, easier and cheaper to model energy use of buildings

add to favorites email to friend print save as pdf

Related Stories

Terrorist-resistant bridge is developed

Jan 26, 2006

A University at Buffalo engineer has developed a "multi-hazard" design that he said makes bridges more resistant to terrorist attacks and earthquakes.

Powerful Quake to Test New Bridge Construction Method

May 12, 2010

(PhysOrg.com) -- A magnitude 7.0 earthquake will strike at the University at Buffalo on May 18 as researchers conduct tests on a 70-ton, 60-foot-long concrete bridge in the university's massive Structural Engineering and ...

Recommended for you

Paraffins to cut energy consumption in homes

10 hours ago

Thermal energy storage is a common strategy in energy production systems in which the period of production does not coincide with that of consumption. This happens with the production of hot water by means ...

Rubber technology important in reducing CO2 emissions

13 hours ago

Despite numerous measures taken by manufacturers, the worldwide level of CO2 car emissions is still increasing at an alarming rate. The automotive sector is working hard to develop lightweight constructions, ...

EnGo public charging station serves university students

17 hours ago

Kinetic tiles and solar panels are ready to power up mobile devices for people on the go thanks to something called the EnGo charging station. The technology involves a combination of kinetic tiles and solar ...

User comments : 0