Japanese tsunami's effects will change how, where future nuclear power plants are built

March 16, 2011 By Ellen Goldbaum
Japanese tsunami's effects will change how, where future nuclear power plants are built
Seismically isolated platform in the North Pacific demonstrates how power plants can be built to withstand extreme conditions, says Constantinou of UB.

The design of next-generation nuclear power plants and other critical energy facilities will undoubtedly be influenced by the Japanese tsunami and its devastating effects on Japan's nuclear reactors, says Michael C. Constantinou, PhD, professor of civil, structural and environmental engineering at the University at Buffalo.

"If a is built at a site where a 30-foot tsunami wave is possible, if it comes, it is going to have a significant effect, there is no way to control for that," says Constantinou, a structural engineer, and researcher with UB's MCEER (Multidisciplinary Center for Earthquake Engineering Research.) He works on seismic protective systems that deflect and dissipate seismic energy and protect structures during earthquakes.

"The only way to prevent the situation is to build the plant further inland, to seismically isolate it and, perhaps, to elevate it," he says.

According to Constantinou, it is possible to seismically isolate an entire facility on a concrete platform.

"This is possible technologically, but much more complex," he says.

Constantinou is familiar with this technique, having consulted with UB colleague Andrew Whittaker on the design of seismically isolated offshore oil and gas drilling platforms in the North Pacific near Russia's Sakhalin islands, several hundred miles north of the epicenter of the March 11th Japanese earthquake.

"These platforms sit on concrete bases on the with legs that are about 80 meters tall, and the structure on top of the platform is another 20 stories high; the entire structure weighs some 30,000 tons," he explains.

"Conditions there are extreme," he continues. "It is a multi-hazard environment, where one hazard can worsen the effects of another. The platforms are designed to withstand, without failure or significant effect, major earthquakes, ice forces on platform legs where giant slabs of ice two meters thick can form, temperatures as low as -40, blasts and very large waves, on the order of 10 meters above the ocean's surface, which only may occur once every 10,000 years, and waves in combination with ice slabs," he says. "They are very difficult structures to design."

The offshore platforms, about 100 meters by 100 meters in plan dimensions, sit on four friction pendulum bearings, each of which has the capacity to safely carry 13,000 tons. The friction pendulum bearings allow structures to respond to strong earthquakes by swinging gently from side to side, like a pendulum, minimizing the risk of damage to the structure and the people who work inside it.

Constantinou says that the bearings, made of steel ductile to very low temperatures and which have a large displacement capacity and a capacity to carry such large loads, are the only ones suitable for the extreme conditions encountered in the North Pacific.

"It wouldn't be possible to use elastomeric -- rubber -- bearings, which are very frequently used in Japanese buildings," Constantinou explains. "At those very low temperatures, the rubber bearings become brittle and can shatter like glass. Also, these loads and displacement demands are too large for elastomeric bearings."

UB faculty often travel to countries and regions devastated by earthquakes, as part of international efforts to improve seismic design of buildings and infrastructure. Disaster mitigation, response to extreme events and multi-hazard engineering are research strengths of the university identified in the UB 2020 strategic plan.

Explore further: Terrorist-resistant bridge is developed

Related Stories

Terrorist-resistant bridge is developed

January 26, 2006

A University at Buffalo engineer has developed a "multi-hazard" design that he said makes bridges more resistant to terrorist attacks and earthquakes.

Engineering professor shakes things up with earthquake tests

December 7, 2006

Most Texans have little reason to think about earthquakes or seismic damage much in their everyday lives. But for Dr. David Rosowsky of Texas A&M University, extreme events like earthquakes, hurricanes and the performance ...

Powerful Quake to Test New Bridge Construction Method

May 12, 2010

(PhysOrg.com) -- A magnitude 7.0 earthquake will strike at the University at Buffalo on May 18 as researchers conduct tests on a 70-ton, 60-foot-long concrete bridge in the university's massive Structural Engineering and ...

Recommended for you

Netherlands bank customers can get vocal on payments

August 1, 2015

Are some people fed up with remembering and using passwords and PINs to make it though the day? Those who have had enough would prefer to do without them. For mobile tasks that involve banking, though, it is obvious that ...

Power grid forecasting tool reduces costly errors

July 30, 2015

Accurately forecasting future electricity needs is tricky, with sudden weather changes and other variables impacting projections minute by minute. Errors can have grave repercussions, from blackouts to high market costs. ...

Microsoft describes hard-to-mimic authentication gesture

August 1, 2015

Photos. Messages. Bank account codes. And so much more—sit on a person's mobile device, and the question is, how to secure them without having to depend on lengthy password codes of letters and numbers. Vendors promoting ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.