Invisible Milky Way Satellite Uncovered With Help from NERSC

Mar 24, 2011 by Linda Vu
Invisible Milky Way Satellite Uncovered With Help from NERSC
Chakrabarti uses her method to simulate how the Whirlpool Galaxy interacts with it's known satellite galaxy.

(PhysOrg.com) -- Astronomers predict that large spiral galaxies, like our Milky Way, have hundreds of satellite galaxies orbiting around them. While a few satellites are visible, like the Magellanic Clouds, many other galaxies are too dim to see. Scientists suspect that these faint satellite galaxies are primarily comprised of mysterious “dark matter,” which makes up 85 percent of all matter in the universe and so far remains undetected.

Using supercomputers at the National Energy Research Scientific Computing Center (NERSC), Sukanya Chakrabarti, has developed a mathematical method uncover these “dark” satellites. When she applied this method to our own galaxy, Chakrabarti discovered a faint satellite might be lurking on the opposite side of the galaxy from Earth, approximately 300,000 light-years from the galactic center.

“Our approach has broad implications for many fields of physics and astronomy—for the indirect detection of dark matter as well as dark-matter dominated dwarf galaxies, planetary dynamics, and for galaxy evolution dominated by satellite impacts,” says Chakrabarti, who presented these findings at the American Astronomical Society meeting in Seattle. This result came from Chakrabarti’s postdoctoral research at the University of California, Berkeley. She is currently an assistant professor of physics at Florida Atlantic University.

Using Math to Find Invisible Mass

Chakrabarti’s technique involves an analysis of the cold atomic hydrogen gas that comprise the outskirts of a large ’s disk. This cold gas is gravitationally confined to the galactic disk and extends much further out than the visible stars—sometimes up to five times the diameter of the visible spiral. This gas can be mapped by radio telescopes.

This video is not supported by your browser at this time.
Chakrabarti uses her method to simulate how the Whirlpool Galaxy interacts with it's known satellite galaxy.

According to Chakrabarti, the dark satellite galaxies create disturbances in the cold atomic hydrogen gas at the edges of the spiral galaxy’s disk, and these perturbations reveal the mass, distance and location of the satellite. With the help of NERSC systems, she successfully validated her method by analyzing the radio observations of the Whirlpool Galaxy, which has a visible satellite one-third of its size, and NGC 1512, which has a satellite one-hundredth its size. Her calculations correctly predicted the mass and location of both of the known satellite galaxies.

When she applied this analysis to radio observations of our own Milky Way, the analysis revealed a potential dwarf galaxy, or Galaxy X, sitting in the constellation of Norma or Circinus, just west of the galactic center in Sagittarius when viewed from Earth. Because this satellite sits across the Milky Way from Earth, it is obscured in our line of sight by gas and dust, and thus has not been detected.

According to her colleague Leo Blitz of the University of California at Berkeley, searching for with this method is like inferring the size and speed of a ship by looking at its wake. “You see the waves from a lot of boats, but you have to be able to separate out the wake of a medium or small ship from that of an ocean liner,” he says.

“The NERSC systems really sped up my work,” says Chakrabarti. “These systems are a great resource. I am currently using my method to develop a test of modified theories of gravity, and plan on running the simulations at NERSC.”

Galactic Tango in 3D

To illustrate how a satellite galaxy disrupts the gas disk of a large spiral for the American Astronomical Society (AAS) Conference in January 2011, Chakrabarti turned to NERSC Analytics team member Prabhat who translated her scientific data into a three-dimensional (3D) movie for the Space Science Telescope Institute Booth with the VisIt software.


Chakrabarti explains her mathematical method for finding dark matter dominated galaxies at the 217 AAS Meeting in Seattle, Washington.

“When a person looks up at the night sky from Earth, they can’t tell the difference between a star that is far away and one that is nearby. It is the same when you are running simulations on a flat screen, you see bands that stretch in and out but you don’t get the depth that a 3D visualization provides,” says Prabhat.

“Visualizing the merger of two galaxies is like watching a stone drop into a pond. A 2D slice lets you see the ripples, but a 3D view will let you see the splash. In this case of galaxy mergers, a 3D visualization lets us see the splash of the gas and instabilities in the galactic disk in real-time,” says Chakrabarti. “This depth is invaluable when you are studying dynamical phenomenon with variation in the plane.”

Explore further: How baryon acoustic oscillation reveals the expansion of the universe

Related Stories

Forget Planet X! New technique could pinpoint Galaxy X

Jan 13, 2011

(PhysOrg.com) -- Planet X, an often-sought 10th planet, is so far a no-show, but Sukanya Chakrabarti has high hopes for finding what might be called Galaxy X – a dwarf galaxy that she predicts orbits ...

Astrophysicists map the Milky Way's 4 spiral arms

Jan 05, 2009

Iowa State University's Martin Pohl is part of a research team that has developed the first complete map of the Milky Way galaxy's spiral arms. The map shows the inner part of the Milky Way has two prominent, symmetric spiral ...

New Hydrogen Clouds in the M81 Group of Galaxies

Jan 10, 2008

A composite radio-optical image shows five new clouds of hydrogen gas discovered using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT). The spiral galaxy M81 and its satellite, ...

Recommended for you

The Great Cold Spot in the cosmic microwave background

Sep 19, 2014

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

Mystery of rare five-hour space explosion explained

Sep 17, 2014

Next week in St. Petersburg, Russia, scientists on an international team that includes Penn State University astronomers will present a paper that provides a simple explanation for mysterious ultra-long gamma-ray ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

resinoth
1 / 5 (1) Mar 24, 2011
it is heartening to see this type of discovery - is the assumption that these galaxies are made of normal matter?
why are they dark, though - do these satellite galaxies have no stars, or are they just obscured? Are there rivers of this hydrogen gas halo forming 'hydrogensheds' in local groups (akin to watersheds)? If so, their perturbations from expected angles (spiral galaxy A to elliptical galaxy A) could also lead to detection of these dark galaxies.
but why are they dark!?
it's amazing to live in times where regions of the sky have not been looked at through all spectra. I need me a big 'ol telescope.