New instrument for analyzing viruses

Mar 08, 2011

Scientists in Israel and California have developed an instrument for rapidly analyzing molecular interactions that take place viruses and the cells they infect. By helping to identify interactions between proteins made by viruses like HIV and hepatitis and proteins made by the human cells these viruses infect, the device may help scientists develop new ways of disrupting these interactions and find new drugs for treating those infections.

According to Doron Gerber, a professor at Bar Ilan University in Ramat Gan, the PING system (Protein Interaction Network Generator) can be used to examine thousands of potential interactions at a time, and it detects them at a sensitivity 100- to 1,000-time greater than current methods. Gerber developed PING with collaborators at Stanford University, and he will describe the technology today at the 55th Annual Biophysical Society Meeting in Baltimore.

When a infects a human cell, it hijacks the machinery of that cell, recruiting certain host proteins and subverting them to the task of manufacturing new . This feature of viral biology has made notoriously difficult to treat, as therapies must specifically target the virus without harming the cell.

One approach that has been successful is to identify key interactions between viral and host proteins, which can then serve as targets for . For example, the HIV drug Fuzeon works by blocking a from attaching to proteins on the surface of immune system cells, barring entry to the cell.
Like many antivirals, Fuzeon is used in combination with other drugs in a "cocktail." This is because, like most viruses, HIV mutates rapidly, acquiring resistance to individual drugs. Therefore, the need for new antiviral drugs is constant and ongoing.

Using PING, the Israeli and California scientists identified novel cellular partners for proteins from and hepatitis D. "And we can now use the same system to screen for inhibitors," says Gerber, who adds that new treatments are urgently needed for hepatitis C, for which only one treatment exists that works in only half the patient population.

Because PING employs microfluidics, very small samples can be used; gathering enough material has been a particular challenge with existing methods.

Explore further: A refined approach to proteins at low resolution

More information: The presentation, "Mapping Virus-Host Protein Interactions Using the PING Microfluidics Platform," is at 5:00 p.m. on Tuesday, March 8, 2011 in Room 307 of the Baltimore Convention Center. ABSTRACT: tinyurl.com/67lnomy

Provided by American Institute of Physics

4.7 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Penn researchers discover new mechanism for viral replication

Aug 16, 2007

Researchers at the University of Pennsylvania School of Medicine have identified a new strategy that Kaposi’s Sarcoma Associated Herpesvirus (KSHV) uses to dupe infected cells into replicating its viral genome. This allows ...

Hepatitis C virus blocks 'superinfection'

Apr 05, 2007

There’s infection and then there’s superinfection – when a cell already infected by a virus gets a second viral infection. But some viruses don’t like to share their cells. New research from Rockefeller University ...

Scientists identify key interaction in hepatitis C virus

Dec 29, 2010

Scientists from the Florida campus of The Scripps Research Institute have identified a molecular interaction between a structural hepatitis C virus protein (HCV) and a protein critical to viral replication. This new finding ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

User comments : 0