New observations of the giant planet orbiting beta-Pictoris

Mar 03, 2011
Fig. 1. Multi-epoch observations of the β Pictoris b exoplanet. The planet was imaged in 2003 (left image) in the L' band (3.8 μm) in the plane of the circumstellar disk surrounding the star (not seen here). It was detected again in October 2009 (middle) when it had moved to the other side of the star. The new observations made in March 2010 at 2.18 μm, which are now published in A&A, are shown in the right panel. The planet has moved yet again relative to its position measured in 2009.

Astronomy & Astrophysics is publishing new observations of the giant planet around β Pictoris. Discovered in 2009, this planet, called β Pictoris b, has now been detected again with the NaCo instrument on the VLT. Astronomers find that the planet is moving around the star. They have also measured the mass and the effective temperature of β Pic b.

Astronomy & Astrophysics publishes new high angular resolution observations of the giant planet orbiting the star β Pictoris. Located at 63.4 light-years from the Sun, β Pic is a very young star of about 12 million years old, which is 75% more massive than our Sun. β Pic is well known for harboring an extended and structured circumstellar disk. It was actually the first star to have its disk directly imaged more than 25 years ago. In 2009, a giant planet was seen orbiting within the disk. With an orbital distance of 8 to 15 astronomical units (AU), β Pictoris b is the closest exoplanet to its star that has ever been imaged. This planet offers a new opportunity to study the planetary formation processes, in particular the interactions between the planets and their native disks.

An international team of astronomers observed the β Pic system, using the VLT/NaCo instrument at 2.18 μm, previous observations having been made near 4 μm. They detected the planet again and compared these new observations with the previous ones, as illustrated in Fig. 1. Combining all the data together shows that the planet is moving around the star, as expected from the previous data. Analyzing these new observations, the team was then able to measure the mass of the planet, around 7 to 11 times the mass of Jupiter, and its effective temperature, between 1100 and 1700°C.

These new data already tell us something about the formation of the planet, especially because the system is very young. The planet β Pic b is still warm, implying that it has retained most of the primordial heat acquired during its formation. If it has been formed in a similar way to the of our solar system, its mass and temperature cannot be explained by some evolutionary models that hypothesize a total release of the energy acquired during the accretion of disk materials.

Forthcoming observations of β Pictoris b with NaCo and also with the next generation VLT instrument SPHERE should soon provide more details about its atmosphere and orbital properties and about the way this companion influences the surrounding disk material.

Explore further: Hubble shows farthest lensing galaxy yields clues to early universe

More information: High angular resolution detection of β Pictoris b at 2.18 μm, by M. Bonnefoy, et al. Published in Astronomy & Astrophysics, 2011, vol. 528, L15

Provided by Astronomy and Astrophysics

5 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Exoplanet caught on the move (w/ Video)

Jun 10, 2010

(PhysOrg.com) -- Only 12 million years old, or less than three-thousandths of the age of the Sun, Beta Pictoris is 75% more massive than our parent star. It is located about 60 light-years away towards the ...

Hubble Reveals Two Dust Disks Around Nearby Star

Jun 27, 2006

NASA's Hubble Space Telescope has revealed two dust disks circling the nearby star Beta Pictoris. The images confirm a decade of scientific speculation that a warp in the young star's dust disk may actually ...

VLT captures first direct spectrum of an exoplanet

Jan 13, 2010

(PhysOrg.com) -- By studying a triple planetary system that resembles a scaled-up version of our own Sun’s family of planets, astronomers have been able to obtain the first direct spectrum -- the “chemical ...

Chandra finds evidence for stellar cannibalism

Sep 14, 2010

Evidence that a star has recently engulfed a companion star or a giant planet has been found using NASA's Chandra X-ray Observatory. The likely existence of such a "cannibal" star provides new insight into ...

Recommended for you

Fermi satellite detects gamma-rays from exploding novae

13 hours ago

The Universe is home to a variety of exotic objects and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. ASU Regents' Professor Sumner Starrfield is part of a team that ...

Image: Hubble serves a slice of stars

20 hours ago

The thin, glowing streak slicing across this image cuts a lonely figure, with only a few foreground stars and galaxies in the distant background for company.

Evidence of a local hot bubble carved by a supernova

Jul 30, 2014

I spent this past weekend backpacking in Rocky Mountain National Park, where although the snow-swept peaks and the dangerously close wildlife were staggering, the night sky stood in triumph. Without a fire, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Quantum_Conundrum
not rated yet Mar 03, 2011
its mass and temperature cannot be explained by some evolutionary models that hypothesize a total release of the energy acquired during the accretion of disk materials


Well, the mass explains the temperature.

At this huge mass, even if it is primarily a "gas giant", the planet likely has enough radioactive material incorporated in it to provide a source of heat through radioactive decay.

This is an object that is several times more massive than all the planets, dust, gas, asteroids, and comets in our solar system combined. It could have several earth masses worth of uranium and other radioactive materials, and it wouldn't even be a significant percentage of it's total mass.

For example: If the planet is 7 Jupiter masses, then you could have 21 earth masses worth of uranium, and it would still be less than 1%, and would be considered a "trace element".

It's hard to imagine how it could be that large and NOT have at least a few earth masses of radioactive material.