Fridge magnet transformed

Mar 11, 2011
Figure 1: The crystal (left) and magnetic spin (right) structure of the magnet BaFe12O19 when some of its iron atoms are replaced by scandium and magnesium. In the crystal structure, green, red and bronze colors represent barium (Ba), oxygen (O) and the three elements iron (Fe), scandium (Sc) and magnesium (Mg), respectively. The spin structure persists to well above room temperature (~298 kelvin (K)). Credit: 2011 The American Physical Society

The ubiquitous and unremarkable magnet, BaFe12O19, is manufactured in large volumes, has the simplest crystal structure in its class, and is often seen on refrigerator doors—but it is set for an interesting future. By substituting a few of its iron atoms with the elements scandium and magnesium, Yusuke Tokunaga and Yoshinori Tokura from the Japan Science and Technology Agency, along with Yasujiro Taguchi from the RIKEN Advanced Science Institute and their colleagues, have produced a very rare magnet. The rarity of the magnet lies in three features that, taken together, endow it with a high degree of tunability.

Firstly, the new magnet is multiferroic: its magnetization and electric polarization are linked, and each can be potentially controlled by both electrical and magnetic fields. Multiferroic materials may allow for magnetic data storage devices that do not require magnetic fields, resulting in reduced cost, power requirements, and bulk. Other applications, such as sensors, may also be possible.

Another feature of this new magnet is that its electronic spins are arranged in a helix (Fig. 1). Therefore the handedness of the helix is a controllable material quantity, along with the material’s magnetic strength and its electric polarization. By applying a , the researchers were able to change the geometry of the helix, which in turn increased or decreased the strength of the electric polarization.

The third distinguishing feature is that the material’s spin helix structure persists even above room temperature. This contrasts with many other known multiferroic materials, which require liquid nitrogen temperatures in order to form helical spin structures. In fact, the research team studied BaFe12O19 because a related but more complex magnet demonstrated a helical spin structure at low temperature2. It also proved relatively straightforward to fashion large crystals of BaFe12O19, making measurements and device manufacture easier.

The team concluded that the concentration of scandium, the temperature, and the applied magnetic field strength could all be used to control the strength and direction of the materials magnetic and electrical polarization, as well as the retention times of these polarizations. More generally, the new magnet uncovered by Tokunaga, Taguchi, Tokura and colleagues adds to the catalogue of room-temperature multiferroics, which material scientists have just begun to explore. A particularly alluring goal is the discovery of a material with magnetic and electrical ordering at room temperature and in the absence of field, says Tokunaga.

Explore further: The hemihelix: Scientists discover a new shape using rubber bands (w/ video)

More information: Tokunaga, Y., et al. Multiferroic M-type hexaferrites with a room-temperature conical state an magnetically controllable spin helicity. Physical Review Letters 105, 257201 (2010). prl.aps.org/abstract/PRL/v105/i25/e257201d

Ishiwata, S., et al. Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319, 1643–1646 (2008).

Related Stories

Spin polarization achieved in room temperature silicon

Nov 27, 2009

(PhysOrg.com) -- A group in The Netherlands has achieved a first: injection of spin-polarized electrons in silicon at room temperature. This has previously been observed only at extremely low temperatures, ...

Novel magnets made from the strongest known hydrogen bond

Dec 06, 2006

A team of scientists from the US, the UK and Germany has been the first to make a magnetic material constructed from nature's strongest known hydrogen bond. Hydrogen bonds are responsible for many of the properties ...

Vortices get organized

Feb 25, 2011

Exotic entities that arrange into a crystalline structure at near room-temperature could lead to a new approach to electronic memory.

Recommended for you

Mapping the road to quantum gravity

13 hours ago

The road uniting quantum field theory and general relativity – the two great theories of modern physics – has been impassable for 80 years. Could a tool from condensed matter physics finally help map ...

Steering chemical reactions with laser pulses

21 hours ago

With ultra-short laser pulses, chemical reactions can be controlled at the Vienna University of Technology. Electrons have little mass and are therefore influenced by the laser, whereas the atomic nuclei ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

winthrom
not rated yet Mar 12, 2011
one wonders if using this magnetic property in helixes along with hall effect transistors would create read/write memory cells. With the helix polarity electrically controlled to point in one direction, the transistor reads a 0. Change the direction of the polarity in the helix and read a 1. very high speed reads and simple. Does the helix remain in the orientation last written with the power off?

More news stories

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

FCC to propose pay-for-priority Internet standards

The Federal Communications Commission is set to propose new open Internet rules that would allow content companies to pay for faster delivery over the so-called "last mile" connection to people's homes.

SK Hynix posts Q1 surge in net profit

South Korea's SK Hynix Inc said Thursday its first-quarter net profit surged nearly 350 percent from the previous year on a spike in sales of PC memory chips.