Flood-tolerant rice plants can also survive drought, scientists say

Mar 02, 2011
The images show rice plants treated with drought, followed by recovery. Each image shows two kinds of rice plants. The plants to the left of the red tape lack the Sub1A gene; the plants to the right of the red tape have Sub1A. The image marked "Day 0" shows the plants when the experiment began. The image marked "Day 8" shows the plants on the eighth day of drought. The image marked "Recovery" shows that only the plants with the Sub1A gene are recovering from drought stress after the pot was regularly watered for 14 days after Day 8. Credit: Bailey-Serres lab, UC Riverside

Rice, which is sensitive to drought due to its high water requirement, is particularly vulnerable to how global climate change is altering the frequency and magnitude of floods and droughts. If rice plants' combined tolerance to flooding and drought could be improved, however, rice productivity could be protected and even substantially increased.

Now plant scientists at the University of California, Riverside have made a discovery that can greatly benefit rice growers and consumers everywhere. The researchers have demonstrated in the lab and that rice that is flood tolerant is also better able to recover from a drought.

"Flood tolerance does not reduce in these rice plants, and appears to even benefit them when they encounter drought," said Julia Bailey-Serres, a professor of genetics in the Department of Botany and Plant Sciences, who led the research project.

Bailey-Serres and her team – Takeshi Fukao, a senior researcher, and Elaine Yeung, an undergraduate student – focused on Sub1A, a gene responsible for flood or "submergence" tolerance in rice and found only in some low-yielding rice varieties in India and Sri Lanka. Sub1A works by making the plant dormant during submergence, allowing it to conserve energy until the floodwaters recede. Rice with the Sub1A gene can survive more than two weeks of complete submergence.

Plant breeders have already benefited farmers worldwide – especially in South Asia – by having transferred Sub1A into high-yielding rice varieties without compromising these varieties' desirable traits—such as high yield, good grain quality, and pest and disease resistance.

Bailey-Serres's lab found that in addition to providing robust submergence tolerance, Sub1A aids survival of drought. The researchers report that at the molecular level Sub1A serves as a convergence point between submergence and drought response pathways, allowing rice plants to survive and re-grow after both extremes of precipitation.

Study results appear in the January issue of The Plant Cell. The journal has the highest impact factor of primary research journals in plant biology. The research paper also has been selected as a recommended read in the Faculty of 1000.

Bailey-Serres's lab investigated the drought tolerance of flood-tolerant because her research team wanted to be sure that the flood tolerance trait, which the lab has studied for many years, did not reduce the ability of the plant to endure some of the other common stresses – such as drought.

"We found that Sub1A properly coordinates physiological and molecular responses to cellular water deficit when this deficit occurs independently, as in a time of drought, or following 'desubmergence,' which takes place when flood waters recede," Bailey-Serres said.

She explained that after a flood, a period follows when the leaves that have been submerged lose water and become dehydrated. Moreover, because a period of dehydration is part of the natural progression of a flood, Sub1A also happens to have benefits after desubmergence and is therefore important for drought tolerance as well.

"Our finding suggests that the plant recovers well from drought by growing new shoots," Bailey-Serres said. "This is something that is also seen with flooding."

Next, colleagues of Bailey-Serres at the International Rice Research Institute in the Philippines will test the Sub1A rice for drought tolerance in the field.

Explore further: Chickens to chili peppers: Scientists search for the first genetic engineers

Related Stories

Rice: From genes to farmers' fields

Nov 21, 2008

"Waterproof" versions of popular varieties of rice, which can withstand 2 weeks of complete submergence, have passed tests in farmers' fields with flying colors. Several of these varieties are now close to official release ...

Climate change threatens rice production

Oct 16, 2009

Once-in-a-lifetime floods in the Philippines, India's delayed monsoon, and extensive drought in Australia are taking their toll on this year's rice crops, demonstrating the vulnerability of rice to extreme weather.

Gene's past could improve the future of rice

Jan 23, 2009

(PhysOrg.com) -- In an effort to improve rice varieties, a Purdue University researcher was part of a team that traced the evolutionary history of domesticated rice by using a process that focuses on one gene.

Scientists develop high-yield deep water rice

Aug 20, 2009

(AP) -- A team of Japanese scientists has discovered genes that enable rice to survive high water, providing hope for better rice production in lowland areas that are affected by flooding.

Recommended for you

Deadly human pathogen Cryptococcus fully sequenced

Apr 17, 2014

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

User comments : 0

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Plants with dormant seeds give rise to more species

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers develop new model of cellular movement

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Male monkey filmed caring for dying mate (w/ Video)

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...