Flipping a switch on neuron activity

March 7, 2011

All our daily activities, from driving to work to solving a crossword puzzle, depend on signals carried along the body's vast network of neurons. Propagation of these signals is, in turn, dependent on myriad small molecules within nerve cells -- receptors, ion channels, and transmitters -- turning on and off in complex cascades. Until recently, the study of these molecules in real time has not been possible, but researchers at the University of California at Berkeley and the University of Munich have attached light-sensing modules to neuronal molecules, resulting in molecules that can be turned on and off with simple flashes of light.

"We get millisecond accuracy," says Joshua Levitz, a graduate student at Berkeley and first author of the study. According to Levitz, the "biggest advantage is that we can probe specific receptors in living organisms." Previous methods using pharmacological agents were much less specific, affecting every receptor in every cell. Now, investigators can select individual cells for activation by focusing light. And by attaching light-sensing modules to one class of at a time, they can parse the contributions of individual classes to neuronal behavior.

Levitz will be presenting a system in which G-protein-coupled receptors, molecules that play key roles in transmitting signals within cells, can be selectively activated. He is planning to use the system to study the , a region of the brain where memories are formed, stored and maintained. There may be clinical utility to the system as well, he points out. G-protein-coupled receptors are also critical for vision in the , and light-sensing versions could potentially be introduced into people with damaged retinas in order to restore sight.

Explore further: Brain response to odor and light differs

More information: The presentation, "Design and Application of a Light-Activated Metabotropic Glutamate Receptor for Optical Control of Intracellular Signaling Pathways" will be presented at 8:30 a.m. on March 7, 2011 in Room 309 of the Baltimore Convention Center. ABSTRACT: tinyurl.com/4lf9dse

Related Stories

Complex channels

January 24, 2007

The messages passed in a neuronal network can target something like 100 billion nerve cells in the brain alone. These, in turn communicate with millions of other cells and organs in the body. How, then, do whole cascades ...

B cells can act alone in autoimmune disease

August 7, 2008

B cells, the source of damaging autoantibodies, have long been thought to depend upon T cells for their activation and were not considered important in the initiation of autoimmune diseases like lupus or rheumatoid arthritis.

Beginning to see the light

September 29, 2008

(PhysOrg.com) -- Scientists have detailed the active form of a protein which they hope will enhance our understanding of the molecular mechanisms of vision, and advance drug design.

Gene therapy restores vision to mice with retinal degeneration

October 16, 2008

Massachusetts General Hospital (MGH) researchers have used gene therapy to restore useful vision to mice with degeneration of the light-sensing retinal rods and cones, a common cause of human blindness. Their report, appearing ...

Bright lights, not-so-big pupils

December 31, 2008

A team of Johns Hopkins neuroscientists has worked out how some newly discovered light sensors in the eye detect light and communicate with the brain. The report appears online this week in Nature.

Recommended for you

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

Quantum Theory May Explain Wishful Thinking

April 14, 2009

(PhysOrg.com) -- Humans don’t always make the most rational decisions. As studies have shown, even when logic and reasoning point in one direction, sometimes we chose the opposite route, motivated by personal bias or simply ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.