'Fingerprints' match simulations with reality

March 22, 2011
'Fingerprints' match simulations with reality
As a molecule jumps between structural states (below), it creates "dynamical fingerprints" (top).

A theoretical technique developed at DOE's Oak Ridge National Laboratory is bringing supercomputer simulations and experimental results closer together by identifying common "fingerprints."

ORNL's Jeremy Smith collaborated on devising a method — dynamical — that reconciles the different signals between experiments and computer simulations to strengthen analyses of molecules in motion.

"Experiments tend to produce relatively simple and smooth-looking signals, as they only 'see' a molecule's motions at low resolution," said Smith, who directs ORNL's Center for Molecular Biophysics and holds a Governor's Chair at the University of Tennessee. "In contrast, data from a supercomputer are complex and difficult to analyze, as the atoms move around in the simulation in a multitude of jumps, wiggles and jiggles. How to reconcile these different views of the same phenomenon has been a long-standing problem."

The new method solves the problem by calculating peaks within the simulated and experimental data, creating distinct "dynamical fingerprints." The technique can then link the two datasets.

Explore further: 'Fingerprints' match molecular simulations with reality

Related Stories

'Fingerprints' match molecular simulations with reality

February 22, 2011

A theoretical technique developed at the Department of Energy's Oak Ridge National Laboratory is bringing supercomputer simulations and experimental results closer together by identifying common "fingerprints."

Powerful supercomputer peers into the origin of life

October 4, 2010

(PhysOrg.com) -- Supercomputer simulations at the Department of Energy's Oak Ridge National Laboratory are helping scientists unravel how nucleic acids could have contributed to the origins of life.

ORNL Jaguar supercomputer surpasses 50 teraflops

August 25, 2006

An upgrade to the Cray XT3 supercomputer at Oak Ridge National Laboratory, the most powerful supercomputer available for general scientific research in the United States, has increased the system's computing power to 54 teraflops, ...

Study: Forest productivity hiked by CO2

December 9, 2005

An Oak Ridge National Laboratory study in Tennessee suggests forest productivity may be significantly greater in an atmosphere enriched with carbon dioxide.

ORNL, Princeton partners in five-year fusion project

September 14, 2005

Knowledge gained by Oak Ridge National Laboratory researchers and colleagues through an initiative to begin this fall could answer several long-standing questions and give the United States a competitive edge in the design ...

Recommended for you

Changing semiconductor properties at room temperature

October 28, 2016

It's a small change that makes a big difference. Researchers have developed a method that uses a one-degree change in temperature to alter the color of light that a semiconductor emits. The method, which uses a thin-film ...

Novel light sources made of 2-D materials

October 28, 2016

Physicists from the University of Würzburg have designed a light source that emits photon pairs, which are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal ...

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...

Shocks in the early universe could be detectable today

October 27, 2016

(Phys.org)—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.