Enzyme can steer cells or possibly stop them in their tracks

Mar 18, 2011

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered that members of an enzyme family found in humans and throughout the plant and animal kingdoms play a crucial role in regulating cell motility. Their findings suggest an entirely new strategy for treating conditions ranging from diabetic ulcers to metastatic cancer.

David Sharp, Ph.D., associate professor of physiology & biophysics, was the senior author of the study, which was published in the March 6 online edition of Nature Cell Biology.

" in our bodies are in constant motion, migrating from their birth sites to distant targets," said Dr. Sharp. "Cellular movement builds our tissues and organs and underlies key functions such as the immune response and wound healing. But uncontrolled cell migration can lead to devastating problems including mental retardation, vascular disease and metastatic cancer."

Dr. Sharp and his colleagues found that certain members of an family known as katanin concentrate at the outer edge of non-dividing cells where they break up microtubules – dynamic intracellular polymers that regulate cell movement by controlling the formation of protrusions called lamellipodia. (Polymers are large molecules composed of many repeating units.)

When Dr. Sharp's team treated motile cells of the fruit fly Drosophila with a drug that inhibited katanin production, the treated cells moved significantly faster than control cells and with a striking increase in high-velocity movements, indicating that katanin prevents cells from moving too rapidly or in an uncontrolled manner. The researchers observed similar effects with katanin when they examined human cells.

"Our study opens up a new avenue for developing therapeutic agents for treating wounds – burns and diabetic ulcers, for example – as well as metastatic disease," added Dr. Sharp.

Describing katanin as a "microtubule regulator," Dr. Sharp said that its ability to modulate the speed and direction of cell movement – and not just control whether or not it occurs – could be especially useful from a clinical standpoint. Drugs that inhibit katanin, for example, could encourage cells to migrate in a particular direction to heal wounds. Conversely, he said, katanin itself or drugs that stimulate its production might be useful in treating or preventing metastasis.

Explore further: Micro fingers for arranging single cells

More information: The title of the paper is "Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration."

Related Stories

Scientists watch cell-shape process for first time

Oct 10, 2010

Researchers at the Carnegie Institution for Science, with colleagues at the Nara Institute of Science and Technology, observed for the first time a fundamental process of cellular organization in living plant cells: the birth ...

Key mechanism identified in metastatic breast cancer

May 04, 2010

Scientists at the University of Kentucky Markey Cancer Center have identified a key molecular mechanism in breast cancer that enables tumor cells to spread to adjacent or distant parts of the body in a process called metastasis. ...

Understanding the migration of cancer cells

Jun 23, 2008

[B]Activity of regulatory proteins for the growth of filopodia and lamelopodia clarified[/B] Lamellipodia are veil-shaped protrusions of the plasma membrane, that can turn into upward-curled ruffles if they fail to adhere to ...

Recommended for you

Micro fingers for arranging single cells

21 hours ago

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

23 hours ago

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

How to kill a protein

23 hours ago

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

How RNA machinery navigates our genomic obstacle course

23 hours ago

Once upon a time, scientists thought RNA polymerase—the molecule that kicks off protein synthesis by transcribing DNA into RNA—worked like a wind-up toy: Set it down at a start site in our DNA and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.