Enzyme can steer cells or possibly stop them in their tracks

Mar 18, 2011

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered that members of an enzyme family found in humans and throughout the plant and animal kingdoms play a crucial role in regulating cell motility. Their findings suggest an entirely new strategy for treating conditions ranging from diabetic ulcers to metastatic cancer.

David Sharp, Ph.D., associate professor of physiology & biophysics, was the senior author of the study, which was published in the March 6 online edition of Nature Cell Biology.

" in our bodies are in constant motion, migrating from their birth sites to distant targets," said Dr. Sharp. "Cellular movement builds our tissues and organs and underlies key functions such as the immune response and wound healing. But uncontrolled cell migration can lead to devastating problems including mental retardation, vascular disease and metastatic cancer."

Dr. Sharp and his colleagues found that certain members of an family known as katanin concentrate at the outer edge of non-dividing cells where they break up microtubules – dynamic intracellular polymers that regulate cell movement by controlling the formation of protrusions called lamellipodia. (Polymers are large molecules composed of many repeating units.)

When Dr. Sharp's team treated motile cells of the fruit fly Drosophila with a drug that inhibited katanin production, the treated cells moved significantly faster than control cells and with a striking increase in high-velocity movements, indicating that katanin prevents cells from moving too rapidly or in an uncontrolled manner. The researchers observed similar effects with katanin when they examined human cells.

"Our study opens up a new avenue for developing therapeutic agents for treating wounds – burns and diabetic ulcers, for example – as well as metastatic disease," added Dr. Sharp.

Describing katanin as a "microtubule regulator," Dr. Sharp said that its ability to modulate the speed and direction of cell movement – and not just control whether or not it occurs – could be especially useful from a clinical standpoint. Drugs that inhibit katanin, for example, could encourage cells to migrate in a particular direction to heal wounds. Conversely, he said, katanin itself or drugs that stimulate its production might be useful in treating or preventing metastasis.

Explore further: Molecular gate that could keep cancer cells locked up

More information: The title of the paper is "Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration."

Related Stories

Scientists watch cell-shape process for first time

Oct 10, 2010

Researchers at the Carnegie Institution for Science, with colleagues at the Nara Institute of Science and Technology, observed for the first time a fundamental process of cellular organization in living plant cells: the birth ...

Key mechanism identified in metastatic breast cancer

May 04, 2010

Scientists at the University of Kentucky Markey Cancer Center have identified a key molecular mechanism in breast cancer that enables tumor cells to spread to adjacent or distant parts of the body in a process called metastasis. ...

Understanding the migration of cancer cells

Jun 23, 2008

[B]Activity of regulatory proteins for the growth of filopodia and lamelopodia clarified[/B] Lamellipodia are veil-shaped protrusions of the plasma membrane, that can turn into upward-curled ruffles if they fail to adhere to ...

Recommended for you

Molecular gate that could keep cancer cells locked up

Jul 31, 2014

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

Jul 31, 2014

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0