Researchers electrify polymerization

March 31, 2011

Scientists led by Carnegie Mellon University chemist Krzysztof Matyjaszewski are using electricity from a battery to drive atom transfer radical polymerization (ATRP), a widely used method of creating industrial plastics. The environmentally friendly approach, reported in the April 1 issue of Science, represents a breakthrough in the level of control scientists can achieve over the ATRP process, which will allow for the creation of even more complex and specialized materials.

ATRP, first developed by Matyjaszewski in 1995, allows scientists to easily form polymers by putting together component parts, called , in a controlled piece-by-piece fashion. Assembling polymers in such a manner has allowed scientists to create a wide range of polymers with highly specific, tailored functionalities. ATRP has been used to develop , coatings, and drug delivery systems, and is used to develop "smart" materials — those that respond to environmental changes, such as changes in temperature, light, pressure or pH.

The current study represents the latest in a series of advances Matyjaszewski's research group has made since ATRP's inception that make the technique more precise and more environmentally friendly. In a process they are calling electrochemically mediated ATRP, or eATRP, the researchers used a computer-controlled battery to apply an electrochemical potential across the ATRP reaction.

"This marks the first time that we've paired electrochemistry with ATRP, and the results were startlingly successful," said Matyjaszewski, the J.C. Warner Professor of Natural Sciences at CMU. "We found that by adjusting the current and voltage we could slow and speed up, or even start and stop the reaction on-demand. This gives us a great deal more flexibility in conducting our reactions that should lead to the development of precisely engineered materials."

In traditional ATRP reactions scientists use a copper catalyst to grow a complex polymer structure by adding a few monomeric units at a time to the chain. The process relies on paired reduction-oxidation (redox) reactions between two species of copper — the activator CuI and deactivator CuII — where the two catalysts exchange electrons back and forth. Occasionally, one of the exchanges will spontaneously stop, called a radical termination, resulting in the accumulation of CuII. To keep the polymerization going, researchers must rebalance the system by compensating for the excess CuII.

In the early ATRP experiments, scientists addressed this problem by adding more CuI to the system. This generated materials with high, sometimes toxic, levels of copper, reaching around 5,000 parts-per-million (ppm). Such levels of copper are hard to remove using current industrial equipment. As an alternative, Matyjaszewski and colleagues developed novel methods for using activators and reducing agents to reactivate the CuII. Most notably, they found that environmentally friendly reducing agents like sugars or vitamin C were highly effective in reducing the amount of copper catalyst used in ATRP reactions.

In the current study, Matyjaszewski and Visiting Assistant Professor of Chemistry Andrew Magenau looked to electrochemistry as a means for maintaining balance in ATRP reactions. They found that adding electricity capitalized on the redox reaction by moderating the transfer of electrons. This allowed them to compensate for the radical terminations and reduce the amount of copper needed to run ATRP. As a result the amount of copper in the system was reduced to 50 ppm, a 100-fold decrease. In terms of creating a greener, less toxic form of ATRP, this amount rivaled Matyjaszewski's previous studies that used vitamin C and sugars as reducing agents, but has the added benefit of not requiring the addition of any additional organic or inorganic reducing agents.

The researchers found that applying electricity to the system also gave them more precise control over the reaction. The computer-controlled battery allowed them to manipulate the ATRP process in real-time by changing the current or voltage.

The researchers have used this process to create the standard types of polymers made with ATRP: star, brush and block copolymers. They believe that the meticulous control eATRP gives them over the rate of polymerization will allow for the creation of polymers with even more complex architectures.

Explore further: Chemists reinvent the science and industry of making plastics

Related Stories

Chemists reinvent the science and industry of making plastics

October 12, 2006

Chemists at the University of Pennsylvania have created a new process for free radical polymerization, the chemical reaction responsible for creating an enormous array of everyday plastic products, from Styrofoam cups to ...

Clicking synthetic and biological molecules together

February 19, 2008

Dutch researcher Joost Opsteen has developed a method to click polymers together in a controlled manner. Using this method, he can even attach proteins to nanoballs. For instance, this approach could be used to transport ...

The Long and the Short of Acrylate Polymerization

September 22, 2009

(PhysOrg.com) -- Used in such diverse applications as adhesives, detergents, and super-absorbent disposable diapers, polyacrylates are key polymers, but the mechanisms of their formation are complex and have long been incompletely ...

Radical predictions in polymer chemistry

January 21, 2011

Free radicals may have a bad reputation for causing ozone depletion and premature aging, but they are in fact extremely useful for making novel materials, particularly polymers. Skilled chemists can link up a wide range of ...

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Water heals a bioplastic

September 1, 2015

A drop of water self-heals a multiphase polymer derived from the genetic code of squid ring teeth, which may someday extend the life of medical implants, fiber-optic cables and other hard to repair in place objects, according ...

Naturally-occurring protein enables slower-melting ice cream

August 31, 2015

(Phys.org)—Scientists have developed a slower-melting ice cream—consider the advantages the next time a hot summer day turns your child's cone with its dream-like mound of orange, vanilla and lemon swirls with chocolate ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

bugmenot23
not rated yet Apr 02, 2011
Do they still need to use copper in the eATRP process?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.