Doubly special relativity

Mar 21, 2011 By Steve Nerlich, Universe Today
The Large Hadron Collider - destined to deliver fabulous science data, but it remains uncertain if these will include an evidence basis for quantum gravity theories. Credit: CERN

General relativity, Einstein’s theory of gravity, gives us a useful basis for mathematically modeling the large scale universe – while quantum theory gives us a useful basis for modeling sub-atomic particle physics and the likely small-scale, high-energy-density physics of the early universe – nanoseconds after the Big Bang – which general relativity just models as a singularity and has nothing else to say on the matter.

Quantum gravity theories may have more to say. By extending general relativity into a quantized structure for space-time, maybe we can bridge the gap between small and large scale physics. For example, there’s doubly .

With conventional special relativity, two different inertial frames of reference may measure the speed of the same object differently. So, if you are on a train and throw a tennis ball forward, you might measure it moving at 10 kilometers an hour. But someone else standing on the train station platform watching your train pass by at 60 kilometers an hour, measures the speed of the ball at 60 + 10 – i.e. 70 kilometers an hour. Give or take a few nanometers per second, you are both correct.

The Planck spacecraft - an observatory exploring the universe and named after the founder of quantum theory. Coincidence? Credit: ESA

However, as Einstein pointed out, do the same experiment where you shine a torch beam, rather than throw a ball, forward on the train – both you on the train and the person on the platform measure the torch beam’s speed as the speed of light – without that additional 60 kilometers an hour – and you are both correct.

It works out that for the person on the platform, the components of speed (distance and time) are changed on the train so that distances are contracted and time dilated (i.e. slower clocks). And by the math of Lorenz transformations, these effects become more obvious the faster than train goes. It also turns out that the mass of objects on the train increase as well – although, before anyone asks, the train can’t turn into a black hole even at 99.9999(etc) per cent of the speed of light.

Now, doubly special relativity, proposes that not only is the speed of light always the same regardless of your frame of reference, but Planck units of mass and energy are also always the same. This means that relativistic effects (like mass appearing to increase on the train) do not occur at the Planck (i.e. very small) scale – although at larger scales, doubly special relativity should deliver results indistinguishable from conventional special relativity.

Doubly special relativity might also be generalized towards a theory of quantum gravity – which, when extended up from the Planck scale, should deliver results indistinguishable from general relativity.

It turns out that at the Planck scale e = m, even though at macro scales e=mc2. And at the Planck scale, a Planck mass is 2.17645 × 10-8 kg – supposedly the mass of a flea’s egg – and has a Schwarzschild radius of a Planck length – meaning that if you compressed this mass into such a tiny volume, it would become a very small black hole containing one Planck unit of energy.

To put it another way, at the Planck scale, gravity becomes a significant force in quantum physics. Although really, all we are saying that is that there is one Planck unit of gravitational force between two Planck masses when separated by a Planck length – and by the way, a Planck length is the distance that light moves within one unit of Planck time!

And since one Planck unit of energy (1.22×1019 GeV) is considered the maximal energy of particles – it’s tempting to consider that this represents conditions expected in the Planck epoch, being the very first stage of the Big Bang.

It all sounds terribly exciting, but this line of thinking has been criticized as being just a trick to make the math work better, by removing important information about the physical systems under consideration. You also risk undermining fundamental principles of conventional relativity since, as the paper below outlines, a Planck length can be considered an invariable constant independent of an observer’s frame of reference while the speed of light does become variable at very high energy densities.

Nonetheless, since even the Large Hadron Collider is not expected to deliver direct evidence about what may or may not happen at the Planck scale – for now, making the math work better does seem to be the best way forward.

Explore further: Black holes do not exist where space and time do not exist, says new theory

More information: Zhang et al. Photon Gas Thermodynamics in Doubly Special Relativity.

add to favorites email to friend print save as pdf

Related Stories

The Genesis of Relativity

Feb 22, 2007

New insights into the premises, assumptions and preconditions that underlie Einstein’s Relativity Theory, as well as the intellectual, and cultural contexts that shaped it, are the subject of a comprehensive study published ...

Astronomy without a telescope -- time freeze

Jan 24, 2011

There is a story told about traveling at the speed of light in which you are asked to imagine that you begin by standing in front of a big clock – like Big Ben. You realize that your current perception ...

Black Holes in a radar trap

Feb 23, 2005

European astronomers succeeded for the first time to confirm the signatures predicted near Black Holes by Albert Einstein's theory of Relativity in the light of the cosmic X-ray background. The group of scientists ...

Car batteries powered by relativity

Jan 14, 2011

( -- French physicist Gaston Plante invented the lead-acid battery in 1859 – almost 50 years before Einstein developed his theories of relativity. Now scientists have found that the lead-acid ...

Recommended for you

Galaxy dust findings confound view of early Universe

6 hours ago

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

Building the next generation of efficient computers

Jan 29, 2015

UConn researcher Bryan Huey has uncovered new information about the kinetic properties of multiferroic materials that could be a key breakthrough for scientists looking to create a new generation of low-energy, ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Mar 21, 2011
So, basically, this sounds like a wild a** guess. We make the math work better without knowing the real mechanism. Someday, hopefully, we will figure out the mechanism and then stop WAGging our tails.
5 / 5 (2) Mar 21, 2011
Ouch! I suspect an author of the article doesn't know the first thing about the subject.
5 / 5 (2) Mar 21, 2011
"conventional special relativity" Love it!
1 / 5 (3) Mar 22, 2011
When an observer measures the speed of light is it the speed of light in the observer's own inertial and non inertial reference frame of the train.

No one can directly measures the speed of light in another inertial system.

Therefore, the light in a second inertial system may well have a higher speed in relationship to the observer.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.