Type 2 diabetes linked to single gene mutation in 1 in 10 patients

Mar 02, 2011

A multinational study has identified a key gene mutation responsible for type 2 diabetes in nearly 10 percent of patients of white European ancestry.

The study, which originated in Italy and was validated at UCSF, found that defects in the HMGA1 gene led to a major drop in the body's ability to make insulin receptors – the cell's sensor through which insulin tells the cell to absorb sugar. This drop in insulin receptors leads to insulin resistance and type 2 diabetes, according to the paper.

Findings appear in the March 2 issue of the Journal of the American Medical Association and online at www.jama.org.

The results provide the unique opportunity for a test to predict potential for the disease in patients, as well as the possibility of identifying which of the current diabetes medications work best for people with this gene mutation, the authors said. Ultimately, it also could help drive research to find new and improved drugs for those patients.

While the study focused on Caucasians, it also lays the groundwork for similar analyses in patients of Asian, African and Native American descent, who suffer from higher rates of the disease, according to diabetes researcher Ira Goldfine, MD, a UCSF professor of medicine and of physiology who led the U.S. arm of these studies.

"This is a major breakthrough in type 2 diabetes," said Goldfine, noting that 26 million Americans have diabetes and an estimated 79 million have pre-diabetes. "Many of our current diabetes drugs are very effective in some patients and not in others. This finding could not only explain why that is, but also could help us target the right drug for the right person, so diabetics can manage their disease better and lead healthier lives."

, which was previously referred to as "adult-onset" diabetes, is a growing global concern and is estimated to affect more than 250 million people worldwide. The disease has long been known to have both hereditary and lifestyle components, but until now, no single gene mutation has been pinpointed as playing a significant role in causing it.

The advance originated in 1993, when Antonio Brunetti, MD, PhD – at the time a postdoctoral fellow in Goldfine's laboratory – discovered that insulin receptors were turned on in cells by a certain protein, which is now understood to be produced by the HMGA1 gene. Brunetti, the senior author on this paper, continued his research at the University of Catanzaro, in Italy, and ultimately identified this in a population of 3,278 Italians with diabetes, matched against a similar number of their compatriots who had neither diabetes nor pre-diabetes.

Brunetti's current study found at least one mutation on that gene in 9.8 percent of the diabetics in the Italian population, versus only 0.6 percent of the control group.

The UCSF team then ran a genetic analysis on 1,928 similar patients from the Genomic Resource in Arteriosclerosis, a DNA bank in the UCSF Cardiovascular Research Institute, a repository for 30,000 patient samples dating back to 1994. That data, mined in the UCSF laboratories of Clive Pullinger, PhD, and John Kane, MD, PhD, generated the same percentages as the Italian population, as did a subsequent study of 404 patients at the University of Reims, in France, by Vincent Durlach, MD.

"This is an excellent example of how international collaborations can find significant patterns in diseases," Brunetti said. " is one of the most complex chronic diseases and it affects millions of people throughout the world. We hope to extend this research to see whether the same percentages hold true throughout the world population."

Brunetti said future research will include further study of variants within the HMGA1 gene, including studies in people with other racial heritages.

Explore further: Discovery of genes that predispose a severe form of COPD

add to favorites email to friend print save as pdf

Related Stories

Impaired fat-burning gene worsens diabetes

Feb 07, 2008

Researchers at the Swedish medical university Karolinska Institutet have in collaboration with researchers from Finland, China, Japan and the US discovered new cellular mechanisms that lead to in insulin resistance in people ...

FDA approves new diabetes treatment

Oct 17, 2006

The U.S. Food and Drug Administration has approved the use of Januvia tablets as the first in a new class of diabetes drugs.

Mutations in the insulin gene can cause neonatal diabetes

Sep 10, 2007

Mutations in the insulin gene can cause permanent neonatal diabetes, an unusual form of diabetes that affects very young children and results in lifelong dependence on insulin injections, report researchers from the University ...

Researchers continue to find genes for type 1 diabetes

Oct 14, 2008

Genetics researchers have identified two novel gene locations that raise the risk of type 1 diabetes. As they continue to reveal pieces of the complicated genetic puzzle for this disease, the researchers expect to improve ...

Recommended for you

Evidence-based recs issued for systemic care in psoriasis

13 hours ago

(HealthDay)—For appropriately selected patients with psoriasis, combining biologics with other systemic treatments, including phototherapy, oral medications, or other biologic, may result in greater efficacy ...

Bacteria in caramel apples kills at least four in US

13 hours ago

A listeria outbreak believed to originate from commercially packaged caramel apples has killed at least four people in the United States and sickened 28 people since November, officials said Friday.

Steroid-based treatment may answer needs of pediatric EoE patients

14 hours ago

A new formulation of oral budesonide suspension, a steroid-based treatment, is safe and effective in treating pediatric patients with eosinophilic esophagitis (EoE), according to a new study in Clinical Gastroenterology and Hepatology, the official clinical practice journal ...

Discovery of genes that predispose a severe form of COPD

16 hours ago

A study by Ramcés Falfán-Valencia, researcher at the National Institute of Respiratory Diseases (INER), found that the mestizo Mexican population has a number of variations in certain genes that predispose ...

On the environmental trail of food pathogens

17 hours ago

Tracking one of the deadliest food contamination organisms through produce farms and natural environments alike, Cornell microbiologists are showing how to use big datasets to predict where the next outbreak could start.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.