3-D tracking of single molecules inside cells

Mar 08, 2011

Researchers at the University of Texas Southwestern Medical Center and the University of Texas at Dallas are reporting today at the 55th Annual Biophysical Society Annual Meeting in Baltimore, MD how they are using a novel 3D cell imaging method for studying the complex spatial-temporal dynamics of protein transport, providing a solution to this fundamental problem in cell biology.

According to the authors of the study, imaging such highly dynamic processes in the cell and in 3D poses major technical challenges in a complex cell monolayer due to cell-to-cell variations in thickness and temporal properties of protein transport. Previous imaging techniques were slow and suffered from poor z-localization/3D-tracking capability.

Using a combination of multifocal plane microscopy (MUM) and nanodot labeling technology, the researchers were able to label single molecules in live cells and track their movement and their interaction with other molecules in a thick cell sample for extended periods of time.

Sripad Ram, the lead author of the study, explains that the main reason he and his colleagues developed these imaging techniques is to track the movement of , which are engineered in their lab. "We want to know where these antibodies go and what they do once they enter the body," says Ram.

He adds that "current microscopy technologies are limited in that you can only image a single focal plane at any given time. If you want to image in three dimensions, you can only do so sequentially, but you end up imaging at the wrong place and at the wrong time thereby missing events over time….what we needed was a technology that could simultaneously image a sample across multiple planes, and that is what multifocal plane is all about."

Explore further: Scientists convert microbubbles to nanoparticles

More information: The presentation, "3D SINGLE MOLECULE TRACKING IN THICK CELLULAR SAMPLES USING MULTIFOCAL PLANE MICROSCOPY" by Sripad Ram, E. Sally Ward, and Raimund J. Ober is at 11:00 am. on Tuesday, March 8, 2011 in Ballroom IV of the Baltimore Convention Center. ABSTRACT: tinyurl.com/4zzt6ys

Related Stories

New ORNL process brings nanoparticles into focus

Jun 23, 2008

Scientists can study the biological impacts of engineered nanomaterials on cells within the body with greater resolution than ever because of a procedure developed by researchers at the Department of Energy's Oak Ridge National ...

Recommended for you

Scientists convert microbubbles to nanoparticles

Mar 30, 2015

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

Designer's toolkit for dynamic DNA nanomachines

Mar 26, 2015

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

Simple method of binding pollutants in water

Mar 26, 2015

New types of membrane adsorbers remove unwanted particles from water and also, at the same time, dissolved substances such as the hormonally active bis-phenol A or toxic lead. To do this, researchers at the ...

Gold nanoparticles for targeted cancer treatment

Mar 26, 2015

The use of tiny drug-loaded nanocarriers for the safe, targeted delivery of drugs to designated parts of the body has received much press in recent years. Human trials of nanocarriers targeting pancreatic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.