Research into chromosome replication reveals details of heredity dynamics

Mar 03, 2011

(PhysOrg.com) -- A novel study from Karolinska Institutet has deepened the understanding of how chromosome replication, one of life's most fundamental processes, works. In a long term perspective these results could eventually lead to novel cancer therapies. The study is presented in the prestigious scientific journal Nature.

By studying in yeast cells, researchers at Karolinska Institutet have discovered that a complex (Smc5/6) helps to release torsional stress created in the when chromosomes are replicated in preparation for a coming cell division.

"Our study also indicates that the stress can propagate more freely along the DNA in a chromosome than was previously thought," says KI professor Camilla Sjögren, head of the team that conducted the study.

The study therefore sheds more light on the mechanisms behind one of life's most fundamental processes. Since topoisomerases, enzymes known to remove replication-related stress in the DNA are common targets for cancer treatments, the finding might eventually lead to new therapies.

When a fertilised egg develops into a complete organism, or when old cells are replaced by new ones, it is done through cell division. If human daughter cells are to survive and develop normally, they must each obtain a full set of 46 chromosomes, which are made of double-stranded DNA helices. Since the original mother cell started as a cell with 46 , these must be duplicated before division take place.

During this process, the DNA double helix is separated so that the replication machinery can reach the individual DNA strands. This prising apart of the strands creates stress in the form of over-twisted DNA in the vicinity of the replication zone. If this stress is not removed, replication can be slowed down or even stopped, and this, in turn, can lead to mutagenesis and/or cell death.

"Several modern cancer treatments attack topoisomerases, but there's a problem in that some cancers become resistant to such therapies," says Professor Sjögren. "Now that we've discovered that also the Smc5/6 complex releases the stress which form during the replication process, our results might trigger the development of drugs that target Smc5/6. This could create another tool for inhibiting tumour growth."

Explore further: Potent, puzzling and (now less) toxic: Team discovers how antifungal drug works

More information: Andreas Kegel, Hanna Betts-Lindroos, Takaharu Kanno, Kristian Jeppsson, Lena Ström, Yuki Katou, Takehiko Itoh, Katsuhiko Shirahige & Camilla Sjögren, Chromosome length influences replication-induced topological stress, Nature, AOP 2 March 2011, DOI: 10.1038/nature09791

add to favorites email to friend print save as pdf

Related Stories

Researchers uncover cancer survival secrets

Aug 11, 2008

A team of Monash University researchers has uncovered the role of a family of enzymes in the mutation of benign or less aggressive tumours into more aggressive, potentially fatal, cancers in the human body.

Scripps research team unravels new cellular repair mechanism

Aug 06, 2008

A Scripps Research team has unraveled a new biochemical pathway that triggers a critical repair response to correct errors in the DNA replication process that could otherwise lead to harmful or fatal mutations in cells. Though ...

Recommended for you

Researchers show fruit flies have latent bioluminescence

Apr 10, 2014

New research from Stephen C. Miller, PhD, associate professor of biochemistry and molecular pharmacology, shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark—otherwise ...

User comments : 0

More news stories

Chemists achieve molecular first

(Phys.org) —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

Metals go from strength to strength

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...