'A little off the top' helps map cells with submicrometer resolution

Mar 02, 2011 By Michael E. Newman
Artist’s illustration showing a HeLa cell with its top already “milled” off being probed by a secondary ion mass spectrometry (SIMS) beam. Molecules from three sections of the cell—the membrane, the cytoplasm and the nucleus—are seen ejecting from the surface in response. The spectra from these molecules are used to map the cell sections from which they originate. Credit: Donald Bliss, National Library of Medicine, National Institutes of Health

To determine if a tissue biopsy reveals the presence of cancer, a histologist often screens for cells with an abnormal appearance or a specific visible trait such as a larger-than-usual nucleus. However, by the time a cancer is physically noticeable, the disease may be in its later stages and more difficult to treat. In an effort to identify the earlier-onset, more subtle chemical changes occurring in a cell heading toward malignancy, researchers at the National Institute of Standards and Technology (NIST) and the National Cancer Institute (NCI) have developed a technique that slices off the top of a cell and makes the structures accessible to spectroscopic examination of their chemical "signature."

Secondary-ion mass spectrometry (SIMS) is a laboratory method developed in the 1960s to define and map the chemicals making up a substance or structure. An ion beam is shot at the surface of a sample, knocking chemical species off the target area that can then be identified by a . The resulting spectra, in turn, can be used to create a chemical map of the sample.

To date, using SIMS imaging to map has yielded only modest success. To get to the interesting stuff inside the cell, the beam must first blast away the outer . Like using a pickax to uncover a fossil, the beam often digs unevenly or too deeply and can damage or destroy the complex molecules and structures inside. The NIST/NCI team tried something more surgical. They first freeze-dried the cell in a manner that prevented its membrane from rupturing and then gently milled the top off the cell with a more powerful, more precisely controlled focused (FIB) that can skim across the cell at a specified depth. The interior of the cell is left exposed and as close to its natural state as possible for the SIMS beam. "In effect, we get a new, extremely data-rich surface for analysis," says team leader Christopher Szakal.

In a recently published proof-of-concept experiment, the NIST/NCI researchers applied their method to samples from the HeLa immortal human cancer cell line. Specific chemical signals were mapped across the region sliced open by the FIB, yielding images of the cell structures they define at resolutions better than a micrometer (millionth of a meter). For example, spectral maps of phospholipids were used to produce two-dimensional views of cell membranes.

The next step, Szakal says, is to show that the FIB can cleanly slice more than just the top layer off of a cell. "If we can use the FIB-SIMS method to chemically map successive layers of a cell, we'll be able to get three-dimensional images of the cell's components," he explains.

Additionally, the NIST/NCI team is developing mathematical algorithms to enhance and improve the images produced by its new system. The researchers hope that the technique will eventually enable diagnosticians to spot early changes in cell structure that could indicate a move toward abnormality (such as an enlargement of the nuclear membrane) or detect the initial presence of biomarkers, chemical species that can potentially be used to monitor the growth of specific cancers.

Explore further: Researchers have developed a diagnostic device to make portable health care possible

More information: C. Szakal, K. Narayan, J. Fu, J. Lefman and S. Subramaniam. Compositional mapping of the surface and interior of mammalian cells at submicrometer resolution. Analytical Chemistry. Vol. 83, Issue 4, pages 1207–1213. Published online Jan. 26, 2011.

Related Stories

Links Between DNA Damage and Breast Cancer Studied

Aug 03, 2006

Researchers from the Pacific Northwest Research Institute (PNRI) and the National Institute of Standards and Technology (NIST) have uncovered a pattern of DNA damage in connective tissues in the human breast that could shed ...

'Micro-rack' measures cell mechanical properties

Mar 02, 2007

Researchers at the National Institute of Standards and Technology have developed a microelectromechanical system (MEMS) cell-stretcher that can measure the mechanical properties of a living cell, such as its ...

Simple Model Cell is Key to Understanding Cell Complexity

May 15, 2008

A team of Penn State researchers has developed a simple artificial cell with which to investigate the organization and function of two of the most basic cell components: the cell membrane and the cytoplasm--the ...

Chemist refines treatment of prostate cancer with light

Jun 07, 2010

There's more than one way to kill a cancer cell. Cliff Berkman is working on a better way -- one that specifically targets prostate cancer cells and causes a type of natural death that spares surrounding tissues ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

User comments : 0