Researchers say cell manipulation could lead to better drug delivery

March 11, 2011

(PhysOrg.com) -- UT Arlington researchers are using focused laser beams to manipulate cells that lead drug-carrying nanoparticles that deliver medicine to cancer cells that need it.

Samarendra Mohanty, assistant professor of physics, and Kytai Nguyen, associate professor of bioengineering, are part of the collaborative research effort in The University of Texas at Arlington’s Biophysics and Physiology Lab.

Those focused laser beams are called optical tweezers and are used in cell manipulation.

The team has tested the process at the microscopic level using human cells and will present the research at the March meeting of American Physical Society in Dallas.

Nguyen said results from this research would help investigators design that have more therapeutic benefits while reducing severe side effects often seen in chemotherapy.

“A focused laser holds the cell. We then use a force against the cell to measure the single cell’s elasticity,” Mohanty said. Elasticity measures how much that cell can stretch. “A cancer cell is normally more brittle, so those can be identified. A nanoparticle carrying a drug is then introduced with the optical tweezers.”

Nguyen said how these nanoparticles interact with the cell gives the researchers valuable information about the cell.

“We can coat them with an antibody that is bound to diseased cells and deliver drugs to only these cells to treat illnesses,” Nguyen said.

Mohanty also is working in the field of optogenetics, an emerging field using low-power light to stimulate neuronal cells. Mohanty said those specific genetically targeted neurons are stimulated with a micro LED (light emitting diode).

He said there has been some success using optogenetics to treat retinitis pigmentosa, an eye disease in which there is loss of vision due to degeneration of photoreceptors in retina.

Explore further: Two-In-One Punch Knocks Out Drug Resistant Cancer Cells

Related Stories

Two-In-One Punch Knocks Out Drug Resistant Cancer Cells

November 4, 2009

(PhysOrg.com) -- Cancer cells, like bacteria, can develop resistance to drug therapy, leading to relapse of disease. One approach showing promise in overcoming multidrug resistance in tumors is to combine two different anticancer ...

'Nanobubbles' kill cancer cells

February 4, 2010

(PhysOrg.com) -- Using lasers and nanoparticles, scientists at Rice University have discovered a new technique for singling out individual diseased cells and destroying them with tiny explosions. The scientists used lasers ...

Using Gold Nanoparticles to Hit Cancer Where It Hurts

February 15, 2010

(PhysOrg.com) -- Taking gold nanoparticles to the cancer cell and hitting them with a laser has been shown to be a promising tool in fighting cancer, but what about cancers that occur in places where a laser light can’t ...

Nano-Vehicle acts as cluster bomb for tumors

September 18, 2010

Chemotherapy, while an effective cancer treatment, also brings debilitating side effects such as nausea, liver toxicity, and a battered immune system. Now, a new way to deliver this life-saving therapy to cancer patients ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.