In search of cancer's common ground: A next-generation view

Mar 03, 2011

Researchers have synthesized the vast literature on cancer to produce a next-generation view of the features that are shared amongst all cancer cells. These hallmarks of the disease provide a comprehensive and cohesive foundation for the field that will influence biomedical researchers in their quest for new cancer treatments.

The review article by Douglas Hanahan of École Polytechnique Fédérale in Switzerland and Robert Weinberg of the Whitehead Institute for Biomedical Research appears in the March 4th issue of Cell, a Cell Press publication. The new article updates and expands on the authors' classic review, "Hallmarks of ," the most cited Cell article of all time.

"To our knowledge there has been no such synthesis for another disease," Hanahan said. "What was special for cancer was the explosion of knowledge, daunting in its scope and detail, but sufficient in terms of mechanistic pieces of a puzzle, to allow such a formulation."

"Cancer is special because it is, conservatively, more than 100 distinct diseases," Weinberg added. "The question is whether one can find commonalities shared by this motley crew."

The approach, as Hanahan and Weinberg explain it, was to stand back and attempt to produce some overarching conceptual scaffold, imposing some order on the vast and seeming unmanageable flood of observations and conceptual models that had poured out of the cancer field since the discovery of the first oncogene in the 1970s. The original "hallmarks" or functional abilities that characterize cancer include: 1) self-sufficiency in growth signals, 2) insensitivity to anti-growth signals, 3) tissue invasion and metastasis, 4) limitless replicative potential, 5) sustained blood vessel growth (angiogenesis), and 6) resistance to cell death.

As the new work details, much has been revealed in the last decade about the molecular and genetic underpinnings of these six original hallmarks. The authors also introduce two enabling hallmarks -- genomic instability and inflammation – and two emerging hallmarks – evasion of the immune system and reprogrammed energy metabolism.

Enabling characteristics set the stage for cancer, Hanahan explained. Genomic instability results in rare mutations that contribute to the regulation or functional mechanics of cancer's acquired capabilities. Inflammation of tumors mistaken for wounds by the immune system brings in wound-healing cells that inadvertently encourage proliferation, angiogenesis, and invasion.

Emerging hallmarks, on the other hand, are features that are beginning to appear as though they may be core features in nearly all cancers based on recent evidence. "While not yet clearly documented to be widespread or ubiquitous in cancers, they may well become so over the coming years," Weinberg said.

Understanding these principles has implications for cancer treatment.

"Drugs targeting each discrete hallmark or enabling characteristic are either clinically approved or are in clinical development, but virtually all show limited benefit due to the development of resistance," Hanahan said. "We pose the reasonable - but far from certain - hypothesis, that by co-targeting multiple hallmarks, drug resistance may be more difficult for a cancer to achieve, thereby producing more enduring clinical benefits for cancer patients."

Ultimately, though, it all comes down to one simple notion: "As before, we believe that there is much to be gained from stepping back and understanding the basic principles of cancer biology rather than burrowing deeply into its myriad details," Weinberg said.

Explore further: Prognostic factors identified for peripheral squamous cell carcinomas of the lung

add to favorites email to friend print save as pdf

Related Stories

Cancer exploits the body's wound-healing process

May 05, 2005

Scientists have known for the last decade that a link exists between wound healing and cancer. For instance, in a 1994 experiment at the Lawrence Berkeley National Laboratory, chickens infected with a cancer virus developed ...

Infiltrating cancer's recruitment center

Jan 26, 2011

The most common connective tissue cell in animals is the fibroblast, which plays an important role in healing wounds. But Dr. Neta Erez of Tel Aviv University's Sackler Faculty of Medicine has now demonstrated that fibroblasts ...

Defining cancer's genetic 'support network'

Feb 15, 2008

Researchers at Duke University’s Institute for Genome Sciences & Policy (IGSP) have developed a new method that essentially does for the genetic pathways underlying cancer what social networking web sites can do for people: ...

Primary tumors can drive the growth of distant cancers

Jun 12, 2008

Primary tumors can encourage the growth of stray cancer cells lurking elsewhere in the body that otherwise may not have amounted to much, according to a new study in the June 13 issue of the journal Cell. As people age, m ...

Recommended for you

Video: Is that double mastectomy really necessary?

Oct 24, 2014

When Angeline Vuong, 27,was diagnosed with cancer in one breast earlier this year, her first reaction was "A DOUBLE MASTECTOMY. NOW. " Turns out, she's far from alone: a recent JAMA study of 190,000 breast cancer cases in ...

User comments : 0