Better brain wiring linked to family genes

Mar 03, 2011

(PhysOrg.com) -- How well our brain functions is largely based on our family’s genetic makeup, according to a University of Melbourne led study.

The study published in the international publication The provides the first evidence of a genetic effect on how ‘cost-efficient’ our network wiring is, shedding light on some of the brain’s make up.

Lead author Dr. Alex Fornito from the Melbourne Neuropsychiatry Centre at the University of Melbourne said the findings have important implications for understanding why some people are better able to perform certain tasks than others and the genetic basis of mental illnesses and some neurological diseases.

He said how the brain’s network is organized has been a mystery to scientists for years. “The brain is an extraordinarily complex network of billions of nerve cells interconnected by trillions of fibres,” he said.

“The brain tries to maximize its bang-for-buck by striking a balance between making more connections to promote efficient communication and minimising the “cost” or amount of wiring required to make these connections. Our findings indicate that this balance, called ‘cost-efficiency’, has a strong genetic basis.”

“Ultimately, this research may help us uncover which specific are important in explaining differences in cognitive abilities, risk for mental illness and neurological diseases such as schizophrenia and Alzheimer’s disease, leading to new gene-based therapies for these disorders.”

“Although genes play a major role in brain function, the environment and other factors contribute to when things go wrong in cases of mental illness and other brain disorders,” he said.

The research team, which included scientists at the Universities of Queensland and Cambridge, UK compared the brain scans of 38 identical and 26 non-identical twins from the Australian Twin Registry.

Using new techniques, the researchers were able to construct detailed maps of each person’s brain network and measured the cost-efficiency of network connections for the entire brain, as well as for specific brain regions.

“We found that people differed greatly in terms of how cost-efficient the functioning of their brain networks were, and that over half of these differences could be explained by genes,” said Dr. Fornito.

Across the entire brain, more than half (60%) of the differences between people could be explained by genes. Some of the strongest effects were observed for regions of the prefrontal cortex which play a vital role in planning, strategic thinking, decision-making and memory.

Previous work has shown that people with more efficient brain connections score higher on tests of intelligence, and that brain network cost-efficiency is reduced in people with schizophrenia, particularly in the prefrontal cortex.

“This exciting discovery opens up a whole new area of research focus for scientists around the world,” he said.

Explore further: New ALS associated gene identified using innovative strategy

Related Stories

Manipulating the Brain Network Could Improve IQ

Jun 10, 2009

In an attempt to investigate why some brains are more intelligent than others, researchers have found that efficient wiring between different brain regions is associated with a higher IQ. This understanding ...

Brain 'maps' reveal clue to mental decline

Feb 08, 2011

(PhysOrg.com) -- The human brain operates as a highly interconnected small-world network, not as a collection of discrete regions as previously believed, with important implications for why many of us experience cognitive ...

Active genes discovered in the developing mammal brain

Jul 13, 2009

A study by scientists at Penn State provides new information about the genes that are involved in a mammal's early brain development, including those that contribute to neurological disorders. The study is ...

Recommended for you

New ALS associated gene identified using innovative strategy

8 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

8 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

9 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

Brain simulation raises questions

12 hours ago

What does it mean to simulate the human brain? Why is it important to do so? And is it even possible to simulate the brain separately from the body it exists in? These questions are discussed in a new paper ...

Human skin cells reprogrammed directly into brain cells

12 hours ago

Scientists have described a way to convert human skin cells directly into a specific type of brain cell affected by Huntington's disease, an ultimately fatal neurodegenerative disorder. Unlike other techniques ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

skybluskyblue
not rated yet May 02, 2011
Then, would other types of brain wiring, such as autism, be genetic too?