Biosensors: Hormonal attractions

Mar 28, 2011 By Lee Swee Heng
Scanning electron microscopy image of a sensor formed from five individual SiNWs. Credit: 2011 Elsevier

Estrogen receptor (ER) proteins play a major role in controlling the transcription of genetic information from DNA to messenger RNA in cells. Understanding how ER proteins interact with specific DNA regulatory sequences may shed new light on important physiological processes in the body, such as cell growth and differentiation, as well as the development and progression of breast cancer. Guo-Jun Zhang at the A*STAR Institute of Microelectronics and co-workers have now developed a detector that uses silicon nanowires (SiNWs) to evaluate these interactions.

The magnitude of the transcriptional activity that arises from the ER–DNA binding varies from one gene to another. Some genes are highly affected while others are only marginally changed. Zhang and his co-workers therefore investigated how slight variations in nucleotide composition affect the binding affinity between ER and DNA. By combining this new information with existing experimental data on gene expression, the researchers could predict transcriptional outcome following ER–DNA binding and gain new insight into ER signaling.

Most imaging techniques developed for the study of interactions between ER proteins and DNA targets are time-consuming and require the use of fluorescent labels. A number of label-free methods exist, but they lack the sensitivity needed to distinguish subtle changes in ER–DNA binding. The new system created by Zhang’s team is both label-free and highly sensitive.

The researchers prepared their ER-based sensor by modifying a nanostructured biosensing platform previously used to detect cardiac biomarkers and the dengue virus. They generated SiNW arrays on a silica substrate (pictured) through optical lithography and covered the silicon surfaces with functional organosilane and organic molecules, which allowed them to immobilize the ER proteins on the . Next, a well-shaped sample holder, constructed of insulating material, was pasted around the SiNW area.

After exposing the ER-functionalized nanowires with the target DNA, the team measured the change in resistance induced by ER–DNA complex formation to assess the binding affinity. Upon binding to ERs, DNA strands increased the overall increase in resistance of the SiNWs by adding negative charges.

The researchers discovered that the sensor could detect ultralow levels of ER-bound DNA and discriminate ER-specific from mutant DNA sequences. Moreover, the DNA easily detached from the ER-functionalized nanowires upon contact with a detergent, enabling the regeneration of the sensor.

“The SiNW array biosensor platform is now helping us in the multiplexed characterization of interactions,” says Zhang.

Explore further: Dead feeder cells support stem cell growth

More information: Zhang, G.-J. et al. Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions. Biosensors and Bioelectronics 26, 365–370 (2010). dx.doi.org/10.1016/j.bios.2010.07.129

Related Stories

ER/PR negative tumors associated with insurance status

Nov 18, 2008

African-American women are at a higher risk for ER/PR negative breast cancer. A new study, to be presented at the American Association for Cancer Research's Seventh Annual International Conference on Frontiers in Cancer Prevention ...

Unearthing a pathway to brain damage

Feb 25, 2011

Neuroscientists have long suspected that abnormal calcium signaling and accumulation of misfolded proteins cause an intracellular membrane-bound organelle called the endoplasmic reticulum (ER) to trigger the ...

Recommended for you

Dead feeder cells support stem cell growth

12 hours ago

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.