Biodegradable tooth-binding micelles inhibit Streptococcus mutans biofilm growth

March 19, 2011

Today, during the 89th General Session & Exhibition of the International Association for Dental Research, held in conjunction with the 40th Annual Meeting of the American Association for Dental Research and the 35th Annual Meeting of the Canadian Association for Dental Research, lead researcher F. Cheni will hold an oral presentation on a research study titled "Biodegradable Tooth-binding Micelles Inhibit Streptococcus mutans (S. mutans) Biofilm Growth."

This research was performed under the objective to develop tooth-binding micelles (TBM) using peptide based biodegradable tooth-binding moieties that can effectively bind to the tooth surface to provide prolonged drug retention in the oral cavity, but can also safely detach from the tooth by gradual degradation of the peptide. Di-phosphoserine, tetra-phosphoserine and hexa-phosphoserine peptides were synthesized using a standard solid phase peptide synthesis method. These oligopeptides were conjugated to Pluronic P123 copolymer using a click reaction.

The tooth-binding micelle was prepared by self-assembly of the modified Pluronics with the antimicrobial agent triclosan. The binding kinetics of TBMs on hydroxyapatite (HA) particles was evaluated using a UV spectrophotometer. For in vitro prevention studies, HA discs were pretreated with different TBM formulations prior to inoculation with S. mutans UA159, and subsequent biofilm formation was assessed. Biofilm growth was measured by calculating the colony forming units (CFU) recovered per disc. Specific differences between the log-CFU/biofilm of each experimental group were analyzed using the Student t-test. A p-value of < 0.05 was considered as statistically significant.

The binding kinetics of TBMs on HA particles were found to be fast (< 1 min). higher binding capacity was achieved using tetra- and hexa-phosphoserine as binding moieties. in biofilm prevention study, the tbm treated groups all showed significantly lower cfu (2 to 4-log reduction, p<0.05) per ha disc compared to the control groups.

Explore further: Researchers report initial success in promising approach to prevent tooth decay

More information: This is a summary of abstract #3027 "Biodegradable Tooth-binding Micelles Inhibit Streptococcus mutans Biofilm Growth," to be presented by F. Cheni on Saturday, 10:45 a.m. - 12:15 p.m. in room 30AB of the San Diego Convention Center.

Related Stories

Tooth loss, dementia may be linked

October 10, 2007

Tooth loss may predict the development of dementia late in life, according to research published in the October issue of The Journal of the American Dental Association (JADA).

Topical oral syrup prevents early childhood caries

July 5, 2008

Dental researchers at the University of Washington have reported a significant reduction of tooth decay in toddlers who were treated with the topical syrup xylitol, a naturally occurring non-cavity-causing sweetener. Their ...

Building better bone replacements with bacteria

September 7, 2009

Bacteria that manufacture hydroxyapatite (HA) could be used to make stronger, more durable bone implants. Professor Lynne Macaskie from the University of Birmingham this week (7-10 September) presented work to the Society ...

Taking a closer look at plaque

October 26, 2010

A team of University of Rochester scientists is using the technique of Raman spectroscopy to study two common dental plaque bacteria, Streptococcus sanguis and mutans. The relative balance of the two may be an indicator of ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

Machine Translates Thoughts into Speech in Real Time

December 21, 2009

(PhysOrg.com) -- By implanting an electrode into the brain of a person with locked-in syndrome, scientists have demonstrated how to wirelessly transmit neural signals to a speech synthesizer. The "thought-to-speech" process ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.