An ancestral link between genetic and environmental sex determination

Mar 24, 2011

Researchers from Osaka University and the National Institute for Basic Biology, Japan, have found a highly significant connection between the molecular mechanisms underlying genetic and environmental sex determination. The scientists report in the open-access journal PLoS Genetics the identification of a gene responsible for the production of males during environmental sex determination in the crustacean Daphnia.

Ways in which an individual organism's sex is determined are diverse among animal lineages and can be broadly divided into two major categories: genetic and environmental. In genetic sex determination (GSD), sex-specific differentiation results from intrinsic between males and females, whereas environmental sex determination (ESD) relies upon environmental signals to induce male or female sex determination. In contrast to GSD models, the genetics of ESD organisms are poorly understood.

The researchers cloned Doublesex (Dsx) genes from Daphnia magna, a freshwater brachiopod crustacean that clones itself to produce males in response to certain environmental cues. The Dsx genes play an important role in controlling sexual differences in organisms using GSD such as nematodes, insects, and . Knocking out one particular Dsx gene, DapmaDsx1, in male embryos resulted in the production of female traits including ovarian maturation, whereas ectopic expression of DapmaDsx1 in female embryos resulted in the development of male-like phenotypes.

The researchers infer that there is an ancient, previously unidentified link between genetic and environmental sex determination. This study was confined only to the role of Dsx in ESD, so it would be highly desirable to establish the link between the environmental signal and Dsx expression. However, this work lends support to the "Doublesex hypothesis" of sex determination, in which many different sorts of upstream regulatory pathways could converge on Dsx-family genes, which would serve as the basis of sexual differentiation mechanisms across the animal kingdom.

Explore further: Scientists tap trees' evolutionary databanks to discover environment adaptation strategies

More information: Kato Y, Kobayashi K, Watanabe H, Iguchi T (2011) Environmental Sex Determination in the Branchiopod Crustacean Daphnia magna: Deep Conservation of a Doublesex Gene in the Sex-Determining Pathway. PLoS Genet 7(3): e1001345. doi:10.1371/journal.pgen.1001345

Related Stories

Male or female? In flies, some cells can't tell

May 04, 2010

An experienced fruit fly researcher can tell at a glance whether the fly she is observing is male or female; a distinct pigmentation pattern on a fly's body (a type of bristle found only on the legs of males) ...

Recommended for you

How a white rot tackles freshly-cut food

Dec 23, 2014

Researchers sequenced and analyzed the white rot fungus Phlebiopsis gigantea, which can break down fresh-cut conifer sapwood. They also sequenced and analyzed the set of P. gigantea's secreted proteins (secretome) ...

Bacteria could be rich source for making terpenes

Dec 23, 2014

If you've ever enjoyed the scent of a pine forest or sniffed a freshly cut basil leaf, then you're familiar with terpenes. The compounds are responsible for the essential oils of plants and the resins of ...

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.