Study identifies promising target for AIDS vaccine

Mar 31, 2011

A section of the AIDS virus's protein envelope once considered an improbable target for a vaccine now appears to be one of the most promising, new research by Dana-Farber Cancer Institute scientists indicates.

The section, a twisting strand of protein known as the V3 loop, is an attractive vaccine target because immune system antibodies aimed at the loop may offer protection against multiple genetic subtypes of HIV-1, the that causes AIDS. This is a key prerequisite of any AIDS vaccine because the viruses mutate rapidly and by now comprise millions of different strains that are grouped into different genetic subtypes, or "clades." The researchers' findings are published online in the Public Library of Science journal .

In the study, investigators injected a monoclonal antibody -- a preparation of millions of identical antibodies that fight viral infection -- into Asian monkeys known as macaques. The antibody came from a person infected with a specific clade of HIV-1. The macaques were then exposed to virus of a different clade. Investigators knew the antibody would latch onto a portion of the virus's V3 loop, potentially barring the virus from invading nearby cells, but they didn't know whether it would prevent infection from a separate subtype of the virus.

The results were striking: All of the treated monkeys were protected from infection by the monkey form of HIV-1, known as SHIV. Monkeys exposed to the virus without receiving the monoclonal antibody, by contrast, became heavily infected.

"This is the first time a monoclonal antibody made against an AIDS virus of one clade has provided complete protection against an AIDS virus of a different clade in animal models," said the study's senior author, Ruth Ruprecht, MD, PhD, of Dana-Farber. "Previous studies have shown that such neutralizing antibodies can protect macaques from infection within one clade; but as more clades of the AIDS virus evolve, it has been unclear whether such antibodies could shield across different clades and prevent infection. Now we have an answer."

AIDS vaccines need to be broadly effective, Ruprecht said, offering protection from a range of HIV-1 subtypes anywhere in the world. It is particularly important for such vaccines to shield against clade C, which accounts for almost 60 percent of worldwide AIDS cases and predominates in sub-Saharan Africa, India, and China. In many parts of the world, clade C has combined with clade B, but retains a clade C protein envelope. Ruprecht and her colleagues have showed that the antibody against the V3 loop prevented infection by a clade C virus.

The antibody treatment technique used in the study is unlikely to confer long-term protection against HIV-1 because the infected antibodies do not remain active in the body for very long. The value of the study is that it demonstrates that antibodies directed against the V3 loop of one clade of HIV-1 can create an immune system shield against another clade.

To translate this discovery into a vaccine, researchers need to devise a way to focus the body's immune system responses to the small portion of the V3 loop that is shared by viruses of different clades. The immune system could then generate its own protective antibodies against the virus. One way of accomplishing this may be to create small molecules that represent this special region inside the V3 loop so the immune system can recognize and attack it.

The study's findings represent something of a vindication for the V3 loop as an immune system target, Ruprecht remarked. While scientists have long known that V3 can spark an response to HIV-1, the loop was thought to be a clever "decoy:" the body would produce that home in on V3, but these would be unable to block infection by slightly different versions of the virus. The V3 loop has long been known to mutate very rapidly. Viruses with slightly altered protein envelopes would then begin the infection process. The study has shown that a special region of V3 is a prime target, after all.

Explore further: Point-of-care CD4 testing is economically feasible for HIV care in resource-limited areas

Provided by Dana-Farber Cancer Institute

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

HIV isolate from Kenya provides clues for vaccine design

Jan 02, 2008

Two simple changes in its outer envelope protein could render the AIDS virus vulnerable to attack by the immune system, according to research from Kenya and the Fred Hutchinson Cancer Research Center published in PLoS Medicine.

Scientists Find Rare, Potent Antibody to HIV-1

Feb 23, 2009

(PhysOrg.com) -- Scientists at Duke University Medical Center have for the first time isolated an important antibody in human serum that could potentially play a key role in the design of an AIDS vaccine. The research appears ...

Recommended for you

The genetics of coping with HIV

21 hours ago

We respond to infections in two fundamental ways. One, which has been the subject of intensive research over the years, is "resistance," where the body attacks the invading pathogen and reduces its numbers. Another, which ...

Long acting HIV drugs to be developed

Sep 11, 2014

HIV drugs which only need to be taken once a month are to be developed at the University of Liverpool in a bid to overcome the problem of 'pill fatigue'.

Puerto Rico partners on US HIV vaccine project

Sep 10, 2014

Puerto Rico's governor says the island's largest public university is partnering with federal agencies to oversee a U.S.-funded project aimed at trying to develop a prophylactic vaccine for the HIV virus that causes AIDS.

User comments : 0