Researchers first worldwide to generate pluripotent stem cells from horses

Feb 28, 2011

Pluripotent stem cells have been generated from horses by a team of researchers led by Dr. Andras Nagy at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital and Dr. Lawrence Smith at the University of Montreal. The findings will help enable new stem-cell based regenerative therapies in veterinary medicine, and because horses' muscle and tendon systems are similar to our own, aid the development of preclinical models leading to human applications.

In a world first, have been generated from horses by a team of researchers led by Dr. Andras Nagy at the Samuel Lunenfeld Research Institute of Mount Sinai Hospital and Dr. Lawrence Smith at the University of Montreal's Faculty of Veterinary Science. The findings will help enable new stem-cell based regenerative therapies in veterinary medicine, and because horses' muscle and tendon systems are similar to our own, aid the development of preclinical models leading to human applications. The study was published in the February 28 issue of the leading journal Stem Cell Reviews and Reports.

These induced pluripotent stem (iPS) cells can develop into most other cell types and are a source of great hope for use in regenerative medicine and the development of new drugs to prevent and treat various illnesses. One aspect of regenerative medicine is the process of creating living, functional tissues to repair or replace tissue or organ function lost due to damage or disease. "To date, iPS cells have been established from several species, but our study is the first to report the derivation of these changeable cells from horses," Dr. Smith explained.

The research represents a breakthrough for both human and animal health alike. "Equine iPS cells bring new therapeutic potential to the veterinary field, and open up the opportunity to validate stem-cell based therapies before clinical studies in humans," Dr. Nagy said. "As well, stem-cell based studies using the horse as a model more closely replicate human illnesses, when compared with studies in mice."

After two months of reprogramming equine somatic cells, the resulting iPS cell lines expressed hallmark markers of pluripotency, contained a correct set of horse chromosomes, and were able to form a full spectrum of cell types and tissues fulfilling the criteria of pluripotency. The term pluripotency refers to the ability of a stem cell to become any of the vast number of different cell types found in the body. "This means that the cell lines passed all the tests available to us for determining if they truly are what we think they are: pluripotent and a good source for future regenerative applications," said Kristina Nagy, research associate in the Nagy laboratory and lead author of the study.

"The horse is an excellent model for a range of human degenerative diseases, especially those involving joints, bones, tendons and ligaments, such as arthritis," said Dr. Sheila Laverty, a professor in the Faculty of Veterinary Medicine at the University of Montreal. "Bone fracture, as well as damaged cartilage, tendons and ligaments heal poorly in . Therefore, the use of iPS cells in these animals may help enhance long-term tissue repair." Further research will be required to develop clinical treatments.

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Researchers make stem cell breakthrough

Mar 01, 2009

In a study to be released on March 1, 2009, Mount Sinai Hospital's Dr. Andras Nagy discovered a new method of creating stem cells that could lead to possible cures for devastating diseases including spinal ...

Stem cell research to benefit horse owners and trainers

Oct 21, 2008

In a potential breakthrough for the performance horse industry (such as racing and polo), Melbourne scientists are aiming to harness stem cells to repair tendon, ligament, cartilage and bone damage in horses.

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.