Research identifies wild ancestor genes for crop improvement

February 22, 2011 By Krishna Ramanujan

Using the genetic variation found in wild and exotic rice species, researchers are providing breeders with genomics tools and knowledge to develop higher yielding, stress-tolerant varieties, a Cornell researcher reported Feb. 19 at the annual American Association for the Advancement of Science meeting in Washington, D.C.

"Using genomics, we are discovering cryptic forms of natural hidden in low-yielding wild and exotic strains and demonstrating that these genetic resources can be used to enhance the performance of the world's most productive cultivars," said Susan McCouch, professor of plant breeding and genetics, who presented her research, "Discovery of Genes for Crop Improvement From Wild Ancestor Plants," at the meeting.

For example, when selected alleles (gene variants) from a low-yielding wild ancestor of Asian rice (O. rufipogon) were bred into local high-yielding rice cultivars in China, Indonesia, Brazil, Korea, Sierra Leone and the United States, the results led every time to selected offspring with 15-20 percent higher yields than their cultivated parent, said McCouch.

To create novel varieties, plant breeders typically cross the best performing lines with each other, but the rules of genetics say that crosses between genetically dissimilar plants are more likely to generate something new, McCouch said. It's not about whether the genes come from a wild or cultivated plant, but rather whether those genes come from different gene pools, meaning they have evolved separately. Wild rice offers an obvious source of untapped that has evolved separately from domesticated rice for thousands of years.

Today's gene banks hold seeds from hundreds of thousands of wild and cultivated forms of plants whose DNA could lead to new crop varieties, but the genes contained in these seeds are largely uncharacterized, McCouch said. Recently, genomics-based tools have opened the door to investigating these genetic resources. Large-scale genomics experiments are helping to identify and sequences of DNA from wild and exotic plants, understand their functions and develop predictive models about how to unlock the genetic potential of these underutilized plants for crop improvement, McCouch said.

"These discoveries are catalyzing new interest in underutilized exotic germplasm [strains] and are helping to transform the field of from black box experimentation to predictive science," she added.

Explore further: Plant biologist seeks molecular differences between rice and its mimic

Related Stories

Genomics Research Focuses on Rice Variety Improvement

July 1, 2008

Crop varieties can be improved through the study of genomics without creating genetically transformed varieties. That is the mission of a multistate research project led by the University of Arkansas System’s Division of ...

Gene's past could improve the future of rice

January 23, 2009

( -- In an effort to improve rice varieties, a Purdue University researcher was part of a team that traced the evolutionary history of domesticated rice by using a process that focuses on one gene.

Recommended for you

Secrets of a heat-loving microbe unlocked

September 4, 2015

Scientists studying how a heat-loving microbe transfers its DNA from one generation to the next say it could further our understanding of an extraordinary superbug.

Plants also suffer from stress

September 4, 2015

High salt in soil dramatically stresses plant biology and reduces the growth and yield of crops. Now researchers have found specific proteins that allow plants to grow better under salt stress, and may help breed future generations ...

Ancient walnut forests linked to languages, trade routes

September 4, 2015

If Persian walnut trees could talk, they might tell of the numerous traders who moved along the Silk Roads' thousands of miles over thousands of years, carrying among their valuable merchandise the seeds that would turn into ...

Huddling rats behave as a 'super-organism'

September 3, 2015

Rodents huddle together when it is cold, they separate when it is warm, and at moderate temperatures they cycle between the warm center and the cold edges of the group. In a new study published in PLOS Computational Biology, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.