Waiter, there's metal in my moon water

Feb 18, 2011 By Bill Steigerwald
The LCROSS visible camera image showing the ejecta plume at about 20 seconds after the Centaur impact. Credit: NASA

(PhysOrg.com) -- Bring a filter if you plan on drinking water from the moon. Water ice recently discovered in dust at the bottom of a crater near the moon's south pole is accompanied by metallic elements like mercury, magnesium, calcium, and even a bit of silver. Now you can add sodium to the mix, according to Dr. Rosemary Killen of NASA's Goddard Space Flight Center in Greenbelt, Md.

Recent discoveries of significant deposits of on the moon were surprising because our moon has had a tough life. Intense asteroid bombardments in its youth, coupled with its weak gravity and the Sun's powerful radiation, have left the moon with almost no atmosphere. This rendered the lunar surface barren and dry, compared to Earth.

However, due to the moon's orientation to the Sun, scientists theorized that deep craters at the lunar poles would be in permanent shadow and thus extremely cold, and able to trap volatile material like water as ice if such material were somehow transported there, perhaps by comet impacts or chemical reactions with hydrogen, a major component of the solar wind.

The October 9, 2009 impact of NASA's Observation and Sensing Satellite (LCROSS) spacecraft into the permanently shadowed region of the Cabeus crater confirmed that a surprisingly large amount of water ice exists in this region, along with small amounts of many other elements, including metallic ones.

LCROSS was launched June 18, 2009 as a companion mission to NASA's , or LRO, from NASA's Kennedy Space Center in Florida. After separating from LRO, the LCROSS spacecraft held onto the spent Centaur upper stage rocket of the , executed a lunar swingby, and entered into a series of long looping orbits around Earth.

After traveling approximately 113 days and nearly 5.6 million miles (9 million km), the Centaur and LCROSS separated on final approach to the moon. Moving faster than most rifle bullets, the Centaur impacted the lunar surface with LCROSS and LRO watching using their onboard instruments. Approximately four minutes of data were collected by LCROSS before the spacecraft itself impacted the lunar surface.

Killen and her team observed the LCROSS impacts with the National Solar Observatory's McMath-Pierce solar telescope at the Kitt Peak National Observatory, Tucson, Ariz. They were the only team able to see the results of the impacts from the ground.

The impacts vaporized volatile material from the bottom of Cabeus crater, including water and . After the vapor plume rose about 800 meters (around 2,600 feet) – high enough to clear the shadow from the crater rim -- sunlight stimulated the sodium atoms, causing them to emit their signature yellow-orange glow. A high-resolution Echelle spectrometer attached to the telescope detected this unique glow. The instrument separates light into its component colors to identify materials by the characteristic colors they emit when energized by radiation or other events in space.

The spectrometer views the sky through a narrow slit to separate the colors, so the team had to make assumptions about the shape and temperature of the plume to estimate the total amount of sodium liberated by the impacts. Using a computer model of the impact and other data on the impacts from instruments on LCROSS and LRO to guide their assumptions, the team calculated that about one to two kilograms (about 2.2 to 4.4 pounds) of sodium were released. "This is one to two percent of the amount of water released by the impacts," said Killen. "Our oceans have a comparable sodium to water ratio – about one percent." (The amount of sodium derived from the observations depends on the assumed temperature of the vapor.)

This much sodium raises the question: where did it all come from? Sodium atoms from comet impacts could bounce across the lunar surface until they landed in the permanently shadowed regions, where they would get "cold trapped" -- frozen in place. The solar wind carries small amounts of sodium, which could become embedded in the , and it might also liberate sodium from lunar rocks, which are about 0.4 percent sodium. Sodium is also liberated from lunar rocks by meteoroid impacts. (The LCROSS impacts didn't have enough energy to vaporize rock, so it's unlikely the sodium vapor plume simply came from rocks at the impact site, according to Killen.)

"Two percent sodium to water is consistent with the amount of sodium in comets, so perhaps the bulk of the sodium and water came from comet impacts," said Killen. She makes it clear that this is just speculation at this point, and that it's possible they came from a different source or even a variety of sources, including cold-trapped lunar volatiles and solar-wind-induced chemistry. Better evidence for a cometary origin would come from an analysis of the hydrogen isotopes in lunar water, according to Killen.

A flash of infrared light from sodium vapor released at the Centaur impact site, detected with the LCROSS mid infrared camera. Credit: NASA

Isotopes are versions of an element with different weights, or masses. For example, a deuterium atom is a heavier version of a common hydrogen atom because it has an extra particle – a neutron – in its nucleus at the center. Deuterium can be substituted for the regular form of hydrogen in a water molecule, but it is much less common than hydrogen, and its concentration varies in objects across the solar system. If the deuterium to hydrogen ratio in lunar water is similar to the ratio in comets, it would suggest the water came from comet impacts. Since comets as "dirty snowballs" carry many other materials, it would imply that much of the sodium and other volatiles came from comets as well.

The team plans to shed light on the origin of lunar water and other volatiles using data from the upcoming Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, scheduled to be launched in May, 2013. The mission will orbit the moon and observe its tenuous atmosphere (technically called an exosphere, because it is so thin, atoms rarely collide with each other above the surface).

Explore further: Cassini sees sunny seas on Titan

Related Stories

LCROSS Impact Finds Water on the Moon

Nov 13, 2009

(PhysOrg.com) -- The argument that the moon is a dry, desolate place no longer holds water. Secrets the moon has been holding, for perhaps billions of years, are now being revealed to the delight of scientists ...

NASA launches LCROSS Lunar Impactor

Jun 19, 2009

NASA launched its first moon shot in a decade Thursday, sending up a pair of unmanned science probes that will help determine where astronauts could land and set up camp in years to come.

Recommended for you

Cassini sees sunny seas on Titan

17 hours ago

(Phys.org) —As it soared past Saturn's large moon Titan recently, NASA's Cassini spacecraft caught a glimpse of bright sunlight reflecting off hydrocarbon seas.

Is space tourism safe or do civilians risk health effects?

20 hours ago

Several companies are developing spacecraft designed to take ordinary citizens, not astronauts, on short trips into space. "Space tourism" and short periods of weightlessness appear to be safe for most individuals ...

An unmanned rocket exploded. So what?

23 hours ago

Sputnik was launched more than 50 years ago. Since then we have seen missions launched to Mercury, Mars and to all the planets within the solar system. We have sent a dozen men to the moon and many more to ...

NASA image: Sunrise from the International Space Station

Oct 30, 2014

NASA astronaut Reid Wiseman posted this image of a sunrise, captured from the International Space Station, to social media on Oct. 29, 2014. Wiseman wrote, "Not every day is easy. Yesterday was a tough one. ...

Copernicus operations secured until 2021

Oct 30, 2014

In a landmark agreement for Europe's Copernicus programme, the European Commission and ESA have signed an Agreement of over €3 billion to manage and implement the Copernicus 'space component' between 2014 ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

StillWind
1 / 5 (2) Feb 18, 2011
How long will NASA and other scientists cling to the disporven theory of comets as "dirty snowballs"?
Haven't the recent photos finally put that to rest?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.