Study uncovers key mechanisms of cell communication

Feb 07, 2011 By Krishna Ramanujan
Top panel: a fluorescence microscopy image of dividing cells showing the plasma membrane (PM, red) and endoplasmic reticulum (ER, green), with a boxed region showing a PM-ER membrane contact site. Bottom panel: High-resolution electron microscopy of a region of a cell where the ER (green) is near the PM (red). Image: Emr Lab

(PhysOrg.com) -- A unique bridging process may be behind a mystery of intracellular communication, according to new Cornell research published Feb. 4 in the journal Cell.

Researchers at Cornell's Weill Institute for Cell and Molecular Biology have uncovered how certain signaling molecules in the cell are regulated.

The signaling molecules, called phosphoinositide (PI) lipids, are key components of the plasma membrane that surrounds a cell. PI lipids are important in signaling processes involved in cell growth and development, responses to extracellular signals, and transport pathways in and out of the cell. Misregulation of PI lipids has been linked to several diseases, including cancer, diabetes, and developmental and .

"All inherited disorders correspond to defects at the ," said Scott Emr, director of the Weill Institute and senior author of the paper. "Understanding the fundamental aspects of the cellular basis of these signaling pathways is absolutely essential to understand and treat diseases like cancer."

Much like an on-and-off switch, many cellular actions, including the functions of PI lipids, are activated by attaching a phosphate group to proteins or lipids (a process called phosphorylation), and similarly, deactivated by the removal of the phosphate group. A class of enzymes called phosphatases mediates the removal of .

"Previous research has focused on the enzymes called kinases that add phosphates to proteins or lipids (on-switch). We considered the alternative that phosphatases (off-switch) have crucial roles in regulating essential signaling pathways that take place at the ," explained first-author Chris Stefan, a senior research associate in Emr's lab.

The researchers studied a PI phosphatase called sac1, an enzyme that resides in the endoplasmic reticulum, an organelle inside the cell responsible for the synthesis of proteins and lipids and for regulating calcium signaling.

"The puzzle was how sac1 in the endoplasmic reticulum regulates PI lipids in a distinct membrane compartment, the plasma membrane," said Stefan.

"We discovered that a family of proteins, called osh proteins, provides the molecular bridge between PI lipids in the plasma membrane and the phosphatase sac1 in the endoplasmic reticulum," explained co-author and graduate student Andrew Manford.

The osh proteins sense PI lipid levels and respond by creating a kind of scaffolding between the and endoplasmic reticulum, providing the missing link between these two distinct membrane systems. This allows the sac1 phosphatase to shut down PI lipids during communication between these two separate cellular compartments.

Explore further: Fighting bacteria—with viruses

Related Stories

Cornell researchers reveal structure of key protein

Apr 21, 2010

(PhysOrg.com) -- For the first time, researchers -- all Cornell scientists -- have characterized the structure of a protein that belongs to certain enzymes that are essential for proper functioning in all ...

Chemists get grip on slippery lipids

Aug 30, 2007

The ability of the body's cells to correctly receive and convey signals is crucial to good health. Lipids, or fats, play a critical role in this regulation by providing spaces for proteins to gather and network. They are ...

Researchers ID molecular link key for cell growth

Jan 24, 2011

(PhysOrg.com) -- When a cell is preparing to grow or replicate, it starts the way a monarch planning to expand his territory might: by identifying and marshaling the necessary resources, loading them onto ...

Recommended for you

Fighting bacteria—with viruses

7 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

7 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0