UA engineers study hybrid systems to design robust unmanned vehicles

Feb 02, 2011
Mechanical engineering senior (and beekeeper) Sean Phillips prepares bees for tracking of their flight patterns in the UA College of Engineering's Hybrid Dynamics and Control Laboratory in Tucson, Ariz. Credit: University of Arizona College of Engineering

The UA College of Engineering's Hybrid Dynamics and Control Laboratory is developing mathematical analysis and design methods that could radically advance the capabilities of unmanned aircraft and ground vehicles, as well as many other systems that rely on autonomous decision making.

Researchers in the lab design computer control systems that may one day allow robotic surveillance aircraft to stay aloft indefinitely. These systems also might be used to safely guide aircraft and automobiles through small openings as they enter buildings. Or they could help airplanes and ground vehicles navigate in cluttered environments without colliding.

In addition, the research can be applied to multiple programmable devices aboard vehicles or in stationary locations, allowing them to communicate in the presence of adversaries.

The lab's research focuses on and design of control systems that have applications in robotics, biology and .

"What we do here in our lab is mainly theory," said Ricardo Sanfelice, an assistant professor of aerospace and mechanical engineering, who directs the lab. "We model dynamical systems, analyze them mathematically, devise ways to control them, test them in simulations and, when possible, validate them in our test bed.

"But, because of the complexity of movement in some systems that can include sudden transitions in speed or direction, we have to be very careful to be sure reflect the real world, and that's where the experimental lab provides a place for us to check our results."

The lab, which is located in UA's Aerospace and Mechanical Engineering building, consists of a computer room, where Sanfelice and his students devise the computer control systems, and a cavernous test lab, topped with eight motion-capture cameras.

The cameras, which were originally designed to create animated figures from the recorded movements of humans and animals, sit on a rail 20 feet off the floor and track the movements of radio-controlled model airplanes, helicopters and automobiles that are flown or driven by computers. The cameras take the place of satellites in this indoor GPS system.

"We can test our theories 24/7 in this test lab without the weather constraints involved in outdoor testing," Sanfelice, said. "We mathematically model the systems we want to control and design a set of computer instructions to accomplish a particular task, such as hovering."

Testing outdoors is more time consuming and costly, and conditions are more difficult to control, he explained. Testing indoors allows the computing brains to stay safely on the ground making decisions based on data coming from the motion-capture cameras. The cameras continuously record the vehicle's position, orientation, and velocity.

"When we transition to outdoor testing, the computer has to be onboard, like a traditional airplane autopilot, receiving information from satellite-based GPS systems, whereas in the lab, the cameras function as the GPS," he said.
"After extensive testing indoors, we're in a better position to use our resources more efficiently when we transfer to outdoor, real-world experiments to validate and fine tune our controllers."

Sanfelice and his students currently are studying ways to extract energy from wind gusts and thermals to gain altitude without using power, just like birds do when soaring to greater altitudes. "This is very different from traditional control system design, where you want to nullify the effects of perturbations. Here, we're exploiting them," he said.

Sanfelice noted that hybrid control system theory is a relatively new field, having evolved during the past 20 years or so. As a result, theoretical tools for analysis, design, and simulation of hybrid control systems are in the early stages of development. "We are developing a toolbox for such systems, to make them more designer- and user-friendly," he explained. "We hope that our simulation software for these systems will eventually become part of a commercial simulation product."

Explore further: Greater safety and security at Europe's train stations

Related Stories

Robotics: Taking soldiers out of harm's way

Jun 01, 2006

Over the past three years, thousands of American soldiers in Iraq have been horribly injured or killed by improvised explosive devices (IEDs). The explosives, placed near or buried under roadways and often ...

Engineering modifications enhance aircraft safety

Feb 23, 2007

Modifications of an aircraft control system developed by University of Leicester engineers, have been tested by flight test engineers from the German Aerospace Center (DLR) and German Air Force test pilots.

Recommended for you

Greater safety and security at Europe's train stations

15 hours ago

When a suspicious individual fleas on a bus or by train, then things usually get tough for the police. This is because the security systems of the various transportation companies and security services are ...

Fingerprints for freight items

16 hours ago

Security is a top priority in air freight logistics but screening procedures can be very time consuming and costly. Fraunhofer researchers intend to boost efficiency with a new approach to digital logistics, ...

On the way to a safe and secure smart home

16 hours ago

A growing number of household operations can be managed via the Internet. Today's "Smart Home" promises efficient building management. But often the systems are not secure and can only be retrofitted at great ...

DIY glove-based tutor indicates muscle-memory potential

Aug 31, 2014

A senior editor at IEEE Spectrum worked on a DIY project that enabled his 11-year-old son to improve his touch typing by use of a vibrating glove. His son was already "pretty quick on the keyboard," said ...

User comments : 0