Trichinosis parasite gets DNA decoded (w/ Video)

Feb 20, 2011
Trichinosis is caused by eating raw or undercooked pork or carnivorous wild game animals, such as bear and walrus, infected with the parasitic worm, Trichinella spiralis. While the disease is rarely deadly, some patients live for months or years with chronic muscle pain and fatigue until the worms eventually die. Photo by Jonathan Eisenback, Mactode Publications

Scientists have decoded the DNA of the parasitic worm that causes trichinosis, a disease linked to eating raw or undercooked pork or carnivorous wild game animals, such as bear and walrus.

After analyzing the genome, investigators at Washington University School of Medicine in St. Louis and their collaborators report they have identified unique features of the parasite, Trichinella spiralis, which provide potential targets for new drugs to fight the illness. The research is published online Feb. 20 in .

While trichinosis is no longer a problem in the United States – fewer than a dozen cases are reported annually – an estimated 11 million people worldwide are infected. Current treatments are effective only if the disease is diagnosed early.

"It takes less than two weeks for the larvae to travel from the intestine to muscle, where they live," says lead author Makedonka Mitreva, PhD, research assistant professor of genetics at Washington University's Genome Center. "Once the worms invade the muscle, drugs are less effective. While the disease is rarely deadly, patients often live for months or years with chronic muscle pain and fatigue until the worms eventually die."

This video is not supported by your browser at this time.
Scientists have decoded the DNA of the parasitic worm that causes trichinosis, a disease linked to eating raw or undercooked pork or carnivorous wild game animals, such as bear and walrus. Credit: Washington University

Today, trichinosis occurs most often in areas of Asia and Eastern Europe where pigs are sometimes fed raw meat, and meat inspections are lax.

The new research also has implications far beyond a single parasitic disease, the researchers say. T. spiralis is just one of many thousands of parasitic roundworms called nematodes that, according to the World Health Organization, infect 2 billion people worldwide, severely sickening 300 million. Other species of parasitic nematodes cause diseases in pets and livestock and billions of dollars of crop losses annually.

Among nematodes, T. spiralis diverged early, some 600-700 million years before the crown species, C. elegans, a model organism used in research laboratories. To date, the genomes of 10 nematodes, including five parasitic worms, have been decoded. The latest addition of the T. spiralis genome now allows scientists to compare species that span the phylum.

"T. spiralis occupies a strategic position in the evolutionary tree of nematodes, which helps fill in important knowledge gaps," explains senior author Richard K. Wilson, PhD, director of Washington University's Genome Center and professor of genetics. "By comparing genomes, we have identified key molecular features that distinguish parasitic nematodes, raising the prospect that a single targeted drug may be effective against multiple species."

Over all, the genome of T. spiralis is smaller than that of C. elegans. It has 15,808 genes, compared to C. elegans' 20,000.

Moreover, about 45 percent of T. spiralis genes appear to be novel. These genes have not been found in other organisms and are not listed in public gene databases. The researchers say the worm's early evolutionary split or its distinctive lifestyle – it can't survive outside the body – may account for this extensive collection of enigmatic genes.

The researchers also found 274 families of proteins that are conserved among all nematodes and that do not exist in other organisms, including humans. Furthermore, they identified 64 protein families that are exclusive to parasitic nematodes.

"This provides opportunities for scientists to dig deeper into the distinctive features of parasitic nematodes that can be targeted with new drugs," Mitreva says. "If those drugs target molecular features unique to parasitic worms, it is more likely the side effects of those drugs will be minimal in humans."

Explore further: The origin of the language of life

More information: Mitreva M, Jasmer DP, Zarlenga DS, Wang Z, Abubucker S, Martin J, Taylor CM, Yin Y, Fulton L, Minx P, Yang S-P, Warren WC, Fulton RS, Bhonagiri V, Zhang X, Hallsworth-Pepin K, Clifton SW, McCarter JP, Appleton J, Mardis ER, Wilson RK. The draft genome of the parasitic nematode Trichinella spiralis. Nature Genetics. Advance online publication, Feb. 20, 2011

Related Stories

Possible new hope for crops battling parasitic infection

Jan 16, 2009

Scientists from Ghent University and VIB (The Flemisch Institute for Biotechnology) have demonstrated how nematodes, also known as roundworms, manipulate the transport of the plant hormone auxin in order to force the plant ...

Researcher Maps Genes of Destructive Parasite

Sep 30, 2008

(PhysOrg.com) -- The genome sequence and genetic map for a microscopic, soil-dwelling worm that is one of the world's most common and destructive plant parasites has been completed by a research team, including UC Davis nematology ...

New devices to boost nematode research on neurons and drugs

Feb 06, 2008

A pair of new thin, transparent devices, constructed with soft lithography, should boost research in which nematodes are studied to explore brain-behavior connections and to screen new pharmaceuticals for potential treatment ...

Recommended for you

The origin of the language of life

21 hours ago

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.