Tiny silicon-oxygen-based polyhedron enters cellular nuclei to light them up selectively

February 24, 2011 By Lee Swee Heng
Schematic illustration showing a positively charged nanoprobe (upper left) binding to a negatively charged double-strand DNA molecule (center), resulting in enhanced fluorescence that allows the visualization of a cellular nucleus (bottom right). Credit: 2010 Wiley-VCH

Nuclei are complex, well-defined organelles carrying genetic information that is critical to the cell. Visualizing these organelles through fluorescence imaging techniques promises to reveal the mechanisms that govern genetic information and provide ways to predict and treat genetic diseases. Working closely with Xinhai Zhang at the A*STAR Institute of Materials Research and Engineering, a research team led by Bin Liu at the National University of Singapore has now developed a method to create ultrasmall, highly selective fluorescent nanoprobes for a cellular nucleus imaging technique known as two-photon excited fluorescence (TPEF) microscopy.

Researchers have proposed a number of fluorescent substances to illuminate nuclei within cells. However, light-induced phenomena, such as cellular autofluorescence and severe photodamage, tend to degrade the performance of these probes.

In the TPEF technique, each nanoprobe produces a fluorescent signal by absorbing not one but two low-energy photons of near-infrared light. This two-photon process significantly reduces the effects of photodamage and cellular autofluorescence while enhancing resolution, making TPEF advantageous over traditional one-photon .

“TPEF imaging is more powerful than one-photon imaging, in particular for in vivo and tissue imaging where strong biological autofluorescence exists,” say Zhang.

Instead of a traditional step-by-step synthesis, the researchers adopted a ‘bottom-up’ approach to synthesize the nanoprobes for their TPEF scheme. These nanoprobes consist of tiny inorganic silicon–oxygen cages surrounded by short positively charged polymer chains. The team obtained cages and chains separately before joining them together, and the synthesis lends itself well to producing TPEF nanoprobes with various light-emission colors and bio-recognition capabilities.

The small, rigid cages facilitate the incorporation of the probes into cellular nuclei, while the positively charged and light-sensitive chains contribute to water-solubility and optical properties. According to Liu, these features combine to ultimately produce TPEF-suitable light-up probes.

The team discovered that the fluorescence of the probes became substantially more intense upon exposure to nucleic acids, such as double-strand DNA and RNA. This is because the positively charged probes bind tightly to the negatively charged nucleic acids through attractive electrostatic interactions, increasing the micro-environmental hydrophobicity of the probes and their fluorescence. Furthermore, the probes selectively stained the of breast cancer and healthy cells with low toxicity.

The researchers are currently expanding their probe collection to include other intracellular target applications. They are also further optimizing the TPEF performance of the probes. “These nanoprobes can open up new ways of interrogating biological systems in a high-contrast and safe fashion,” say Zhang.

Explore further: Miniature microscope allows biomedical researchers to observe tissue deep inside live subjects

More information: Pu, K.-Y., et al. Conjugated oligoelectrolyte harnessed polyhedral oligomeric silsesquioxane as light-up hybrid nanodot for two-photon fluorescence imaging of cellular nucleus. Advanced Materials 22, 4186–4189 (2010). dx.doi.org/10.1002/adma.201090122

Related Stories

Light games with DNA

December 10, 2010

The diagnosis of hereditary diseases and the identification of genetic fingerprints hinge on high-sensitivity DNA imaging biotechnologies. These imaging tools detect specific genes in cells using fluorophores—fluorescent ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.