Surgical instruments with electronic serial numbers

Feb 28, 2011
This is a surgical retractor with an integrated irrigation tube and connecting piece. It is additively manufactured from stainless steel. Credit: Fraunhofer IFAM

Gone are the days of having to compromise on surgeons' demands because of the limitations associated with metal processing: Laser melting has abolished production-related restrictions on surgical instruments. The technique permits customized tools to be manufactured in a single step and also allows the integration of additional new functions such as RFID. Researchers from the Fraunhofer-Gesellschaft will be exhibiting a surgical instrument with an integrated electronic chip at this year's MEDTEC Europe trade show in Stuttgart.

Be it a or a Cesarean section, every operation requires a wide variety of surgical instruments, from simple retractors, clamps, and scissors to more specialist devices such as cerclage wire passers, which surgeons employ to repair long, oblique fractures in bones. These are shaped in such a way as to half encircle the broken bone, and incorporate a hollow channel. In a process not unlike stringing a parcel for posting, thread or wire is fed through the channel around the damaged bone and then knotted in place, both to support the bone and to hold the broken parts together. "Until now, it has always been time-consuming and expensive to manufacture surgical instruments featuring this kind of channel," says Claus Aumund-Kopp of the Fraunhofer Institute for Manufacturing Technology and IFAM in Bremen. Because it is nigh-on impossible to machine curved channels, shaped tubes have traditionally had to be cast, or else welded or soldered retrospectively.

At the MEDTEC Europe trade show in Stuttgart from March 22 through 24 (Hall 6, Booth 6211), the Bremen-based scientists will be presenting a technique that enables the manufacture of surgical instruments of any shape, even those with complex interiors like channels, or those with integrated RFID chips. The technique in question is laser melting. Originally developed for the production of industrial prototypes, this manufacturing method uses an extremely fine laser beam to melt a powder material into almost any desired form, one layer at a time.

"Nowadays, laser melting is a mature technology, which has already proved its worth in the manufacture of medical implants," states Aumund-Kopp. Like all generative – i.e. bottom-up – manufacturing techniques, it has two major advantages: First, unlike in turning, drilling or milling, hardly any material is wasted; and second, there are no production-related restrictions on the shape or interior structure of the workpiece. "The designer can focus exclusively on the surgeon's stated requirements," says the engineer. For surgical instruments, either cobalt-chromium steel or titanium powders could be used – both are standard materials in generative manufacturing. Although no-one has yet begun using the laser melting technique to produce surgical instruments, Aumund-Kopp believes it would be an ideal manufacturing method: "Even small quantities of customized surgical instruments incorporating completely new functions could easily be produced in this way," he reports. 3-dimensional model on a computer is the only template needed; intermediate stages, including the production of special tools or casting molds, are eliminated.

Steel components that are produced using laser melting technology also demonstrate particular electrical properties. Normally, metals shield against electromagnetic radiation such as radio waves, so whenever an RFID chip is cast in metal, a small opening must be left above it, otherwise it will not be readable. But this is not necessary with laser-melted instruments; even though they are completely shrouded in metal, the integrated RFID chips are still able to transmit and receive over short distances. "We assume that the layered structure of the material shapes the field in such a way that the chips remain readable despite their metal covering," explains Aumund-Kopp. This could prove advantageous in the operating room: After every operation, all surgical instruments have to be cleaned, sterilized and counted; if they had integrated RFID chips, quantities and individual numerical codes could be checked quickly and easily and could be electronically linked to the operation report or to specific instrument data such as date of manufacture, protocols for use or current state of cleanliness.

Explore further: Analyzing gold and steel – rapidly and precisely

add to favorites email to friend print save as pdf

Related Stories

Intelligence inside metal components

Nov 24, 2009

Up to now, extreme production temperatures made it impossible to equip metallic components with RFID chips during the operating process. At Euromold in Frankfurt (Dec. 2-5), Germany, Fraunhofer researchers ...

Printing of components with functional ink

Apr 08, 2005

Time is money - even in component manufacturing. Researchers can continuously print out three-dimensional metal parts using a rapid manufacturing process. The unique feature is that they can vary the material ...

Making serial parts out of metal powder

May 03, 2010

Complex-shaped components in aircraft engines can be produced quickly and at a reasonable price using selective laser melting. This has been demonstrated by researchers at the Fraunhofer Institute for Laser ...

Cycling More Intelligently

Apr 11, 2008

Modern bicycles leave nothing to be desired. 21, 24, 27 gears! For many amateur cyclists, such luxury is too much of a good thing. They change gear too infrequently and too late, get out of breath and don’t ...

RFIDs transmit through metal

Feb 02, 2009

(PhysOrg.com) -- Metal efficiently blocks radiation, such as that emitted by RFID chips - small data storage units that are integrated in various objects and transmit their information to a reading device. ...

Recommended for you

Desktop device to make key gun part goes on sale in US

2 hours ago

The creator of the world's first 3D plastic handgun unveiled Wednesday his latest invention: a pre-programmed milling machine that enables anyone to easily make the core component of a semi-automatic rifle.

Minimally invasive surgery with hydraulic assistance

8 hours ago

Endoscopic surgery requires great manual dexterity on the part of the operating surgeon. Future endoscopic instruments equipped with a hydraulic control system will provide added support during minimally ...

Analyzing gold and steel – rapidly and precisely

10 hours ago

Optical emission spectrometers are widely used in the steel industry but the instruments currently employed are relatively large and bulky. A novel sensor makes it possible to significantly reduce their size ...

More efficient transformer materials

10 hours ago

Almost every electronic device contains a transformer. An important material used in their construction is electrical steel. Researchers have found a way to improve the performance of electrical steel and ...

Sensor network tracks down illegal bomb-making

10 hours ago

Terrorists can manufacture bombs with relative ease, few aids and easily accessible materials such as synthetic fertilizer. Not always do security forces succeed in preventing the attacks and tracking down ...

Miniature camera may reduce accidents

10 hours ago

Measuring only a few cubic millimeters, a new type of camera module might soon be integrated into future driver assistance systems to help car drivers facing critical situations. The little gadget can be ...

User comments : 0